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results to detect patterns that may have gone unnoticed.
However, ML models should not be treated as the result

of ML for pattern discovery, we implement ML algo-
rithms to study employee turnover at a large technology
company. We interpret the relationships between vari-
ables using partial dependence plots, which uncover sur-
prising nonlinear and interdependent patterns between
variables that may have gone unnoticed using traditional
methods. To guide readers evaluating ML for pattern dis-
covery, we provide guidance for evaluating model perfor-
mance, highlight human decisions in the process, and
warn of common misinterpretation pitfalls. The
Supporting Information section provides code and data to

implement the algorithms demonstrated in this article.
Managerial Summary: Supervised machine learning

(ML) methods are a powerful toolkit that might help
managers and researchers discover interesting patterns
in large and complex data. We demonstrate this by
using several ML algorithms to investigate the drivers
of employee turnover at a large technology company.
We evaluate the performance of the models, and use
visual tools to interpret the patterns revealed. These

patterns can be useful in understanding turnover, but
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we caution not to confuse correlation with causation.
These methods should be viewed as “exploratory” and
not conclusive proof of relationships in the data. Our
guidance can be helpful for managers evaluating analy-
sis conducted by data scientists in their organizations.
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1 | INTRODUCTION

Machine learning (ML) methods represent an exciting but underutilized toolkit for strategy and
management researchers. Greater adoption of these methods could be facilitated by illustrating
relevant applications of ML to research in our fields. This article attempts to make progress in
this direction by using real-world data to demonstrate a specific application of supervised ML
methods: as an exploratory tool to discover robust patterns in quantitative data. These patterns
can be used as an “observation” for further exploratory inductive or abductive research. These
observations can help researchers formulate better hypotheses grounded in data, which can
later be deductively tested using traditional econometric tools. The pattern discovery capabili-
ties of ML could also be helpful during post hoc analysis of traditional regression results to
detect patterns that may have gone unnoticed.

In addition to demonstrating the application of ML as a useful tool for pattern discovery,
this article also provides guidance for readers to evaluate the work of researchers who use this
tool. As a new methodological framework in our fields, it is important to establish a basis for
how to evaluate whether researchers made appropriate choices when applying machine learn-
ing methods. In other words, what should readers look for in the methods section of the paper
that uses ML methods for pattern discovery? In summary, while the first goal of this article is to
illustrate the use of machine learning for exploratory pattern discovery, the second goal is to
provide guidance for readers to evaluate such work.

Using ML for pattern discovery should be viewed as a complement (not a substitute) to tra-
ditional econometric hypothesis testing (Mullainathan & Spiess, 2017). In the traditional econo-
metric approach, researchers typically specify a model, which yields coefficients that represent
the best-fitting relationship between y and X given the specified model structure. This proce-
dure imposes strict functional form assumptions, but yields statistically consistent, interpretable
coefficients that can be used to test hypotheses (e.g., rejecting a null hypothesis). This is the pre-
ferred approach when researchers can pre-specify clear hypotheses and an appropriate model
to test.

To date, ML has mostly been used to classify meaning embedded in unstructured text and image data to use as
variables in traditional econometric models (Choudhury, Wang, Carlson, & Khanna, 2019; Furman & Teodoridis, 2020;
Gross, 2018; Kaplan & Vakili, 2015; Menon, Choi, & Tabakovic, 2018).
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In contrast, ML methods can be used for discovery-driven (e.g. inductive or abductive)
research. This is because, unlike traditional methods, ML algorithms can reveal complex pat-
terns in X that relate to y using structure that was not specified a priori. Unlike econometric
hypothesis testing, ML algorithms build models with flexible functional forms that maximize a
model's performance using explanatory variables (X) to predict an outcome (). The resulting
functional forms of the models can highlight surprising underlying relationships in the data. In
other words, rather than deductively testing a model specified ex ante by the researcher (as is
the case with traditional econometric analysis focused on inference), ML algorithms inductively
build a model from the data to reveal patterns. These properties also make ML a useful tool in
post hoc analysis of traditional regression results to detect patterns that may have gone
unnoticed.

Thus, ML methods can potentially bring quantitative empirical researchers closer to the tra-
dition of grounded theory, in which researchers identify patterns in the data to build theory
based on data (Bamberger & Ang, 2016; Eisenhardt, 1989; Glaser & Strauss, 1967). In the
broader literature in organization science, Mantree and Ketokivi (2013) state the act of reason-
ing on the part of managers and researchers alike takes three forms: deduction, induction, and
abduction. Deductive reasoning takes the rule and the explanation as premises and derives the
observation. Inductive reasoning combines the observation and the explanation to infer the rule,
thus moving from the particular to the general. Abduction begins with the rule and the observa-
tion; the explanation is inferred if it accounts for the observation in light of the rule. For exam-
ple, if marbles in a bag are white (rule) and I am given a white marble (observation), then
perhaps the marble came from the bag (explanation) (Mantree & Ketokivi, 2013). We argue that
ML methods could provide researchers with a novel and robust observation. The ML methods
do not build theory itself—rather they represent tools which can generate an observation that
aids the process of building theory. The process may be inductive or abductive, depending on
which is taken as given—the explanation or the rule.

To illustrate the use of ML for pattern discovery, we implement several ML algorithms using
employee turnover data from a large technology company. Most ML-built models do not yield
familiar coefficients, so interpretation can be difficult. Fortunately, regardless of the algorithm
used to build a model, we can visualize the relationship between yand X by using partial depen-
dence plots (Friedman, 2001; Zhao & Hastie, 2019). This tool displays how the predicted out-
come changes in response to a variable, conditional upon all other variables in the model. For
our dataset, partial dependence plot visualizations of the models uncover an interesting pattern
in the data that is robust across algorithms. A small group of employees who scored poorly in
onboarding training were dramatically more likely to leave in their first 6 months at the com-
pany. If we had estimated a naive global linear fit (e.g., using a logistic regression with a coeffi-
cient for each explanatory variable), we would have found a statistically significant negative
relationship between training performance and turnover probability. In fact, only the small sub-
set of employees who scored poorly during training was more likely to leave, and only during
the first 6 months. This effect was large enough to drive a negative global effect at odds with
the true positive effect for the majority of employees. A well-trained econometrician might dis-
cover these or similar patterns in the data without ML methods, but it would be difficult and
time consuming to do so in a systematic way, especially with a larger number of covariates and
a large set of possible interactions or nonlinearities. This example serves as a proof-of-concept
that ML can be useful for discovering meaningful patterns in the data that may have gone
unnoticed—potentially leading to imprecise measurement and incomplete views of empirical
relationships.
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We also provide guidance on evaluating empirical work that uses ML methods for pattern
discovery. First, we summarize and provide guidance on making effective decisions at each step
of the ML process, from selecting covariates to evaluating model performance. These guidelines
can be helpful to both researchers and readers of work that uses ML methods for pattern discov-
ery. Second, to evaluate performance of models, we discuss various metrics and illustrate the
use of two plots: (a) a plot that compares training and validation loss (i.e., error); and (b) a
receiver operating characteristic (ROC) plot, which is a graphical comparison of the rate of true
and false positives. Third, we warn of pitfalls that often lead to misinterpretation of ML results
and emphasize throughout the paper that ML is not a license to bypass rigorous causal think-
ing. ML analysis should be considered exploratory rather than as a result of a causal test. Fur-
thermore, we caution against testing ML-identified patterns using the same dataset as though
they were prespecified hypotheses. This would be a form of hypothesizing after the results are
known (HARKing), which is a violation of the assumptions of deductive hypothesis testing.

In summary, effective use of ML requires human agency and expertise. The name “machine
learning” should not be taken literally—as we illustrate, human researchers using these methods
make meaningful decisions in every step of the analysis (summarized in Table 1). The guidelines
summarized in our paper can be helpful for researchers attempting to implement these methods,
and for readers to hold them to a high standard. We now illustrate the use of ML methods for
robust pattern discovery and how to visualize, interpret, and evaluate such patterns. The Supporting
Information provides code and simulated data to help readers apply these tools (see footnote 2 for
direct links to the code).?

2 | GUIDANCE FORIMPLEMENTING AND EVALUATING
ML IN RESEARCH

In this section, we provide general intuition, and a step-by-step framework for understanding
ML implementation for pattern discovery. In the next section, we will demonstrate using a con-
crete example.

2.1 | What is machine learning? Some intuition

First, we provide some intuition on ML methods (for technical foundations of ML, see Hastie,
Tibshirani, & Friedman, 2009). Consider the task of identifying chairs in images (example from
Autor, 2015). We can feed an ML algorithm thousands of example images marked as “chair” or
“not chair”. The algorithm discovers complex nonlinear and interdependent relationships in
pixel clusters that are correlated with images labeled as a “chair.” The algorithm is adjusted to
build many different models of these correlations. Finally, the model that performs best on out-
of-sample images is selected as the final model.?

Python version of code: https://www.kaggle.com/ryanthomasallen/online-appendix-for-cae-2020-python;

R version of code: https://www.kaggle.com/ryanthomasallen/online-appendix-for-cae-2020-r

3Contrast that approach with a linear regression, in which we specify the functional form of a model that estimates a
linear coefficient for each variable. Regardless of the true relationships in the data, this procedure will find the best fit
for the specified model, with no flexibility in functional form. We could explore new model structures by manually
adding interaction or polynomial terms, but trying all the possible combinations would be difficult, time consuming,
and non-exhaustive.
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TABLE 1 ML for pattern discovery: Guidance for evaluating human decisions

Step

Step 1: Select data and explanatory
variables

Step 2: Select algorithm

Step 3: Set regularization
and other hyperparameters

Step 4: Partition data
for training, validation, and
testing

Step 5: Apply preprocessing steps

Step 6: Fit model on training set
and evaluate predictive
performance on validation set

Step 7: Repeat steps 1-6,
varying choices to maximize
predictive performance

Step 8: Evaluate final predictive
performance and interpret model

Human decisions

Which universe of variables to
consider
and which to include

Choose a loss function (usually use
the statistical package default)

Which set of algorithms to try

Prioritize objectives—For example,
predictive accuracy versus model
interpretability

Which set of hyperparameter
values to try

How to split the training/validation
and holdout test sets
How many folds for cross-validation

Applying “feature engineering”
to variables (including scaling)
How to treat missing data (e.g., drop
observations, impute values, etc.)

Which metric of predictive
performance
to use. For example, log-loss score,
accuracy, F, score, average
precision,
AUC score, and so on

When to stop repeating the steps—
When is good enough?

Predictive performance evaluation:
Which metrics and visualizations
of predictive performance to use

Model interpretation: Which
variables
and combinations of variables to
plot partial dependence

Guidance

Specify which variables were used out
of the set of possible variables, and why

Explicitly state the loss function
Disclose all algorithms used
Explain objectives and purpose of analysis

State which hyperparameters and
hyperparameter values were used

Enough data for reliable validation
and testing (perhaps 70% for training/
validation and 30% for holdout test).
10-fold cross-validation is common. More
folds can yield better results but take
longer/more computation.

Describe manipulations of variable values

Report how sensitive results are to
different choices of treating missing data

The output of the loss function is a
common evaluation metric (e.g., log-loss
for classification or mean-squared error
for ML regression). Different metrics can
work better for different objectives. For
example, when the costs of inaccurate
prediction are high (e.g., predicting rare
diseases) consider using a metric that
prioritizes recall. When they are low
(e.g., recommending TV shows), perhaps
give more weight to precision. Metrics
like the F;score can balance these
considerations.

Ideally, stop when you reach a saturation
point—The tweaks only yield very small
improvements to performance.

Report comparisons of the performance on
the holdout test set. Compare to the
same performance metric as training/
validation.

Can also plot visualizations of predictive
performance

Start by plotting variables with high
“variable importance”. For a small
number of variables, consider plotting
all of them. When presenting results,
state which plots you include and do not
include, and why (e.g., we presented
partial dependence plots for all variables
with nonlinear or interactive patterns)
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FIGURE 1 [Illustrative depiction of bias-variance trade-off. Note: Machine learning excels at balancing the bias
variance trade-off. The left panel illustrates a high bias/low variance fit of the points, the right panel illustrates a high
variance/low bias fit, and the middle panel represents a reasonable balance between bias and variance [Color figure
can be viewed at wileyonlinelibrary.com]

[Correction added on 10 December 2020, after first online publication: Figure 1 has been corrected.]

A strength of ML models is the capacity to discover complex relationships, but it is also important
that models are generalizable. After all, the best model to predict in-sample outcomes for any dataset
would simply specify the actual outcome for each data point. Yet such a model would not be general-
izable, and would perform very poorly out-of-sample. Instead, ML algorithms attempt to find a model
that best fits a sample dataset without overfitting, so the model performs well out-of-sample. The ten-
sion between fitting the in-sample data perfectly and generalizing to out-of-sample data is known as
the bias-variance trade-off (Figure 1). As a model is overfit (i.e., relies on idiosyncrasies of in-sample
data for prediction), its bias decreases but its variance increases, making it less generalizable. An
underfit model is biased because it is too simple to describe the data.

The ML approach includes an arsenal of techniques such as cross-validation and regularization (dis-
cussed later) that limit a model's capacity to describe in-sample data. These limitations are necessary for the
model to perform well out-of-sample. An important idea in implementing ML is experimenting with differ-
ent constraints on model descriptive capacity to find the model that performs the best out-of-sample.*

Showing the actual mathematical details of ML implementation is beyond the scope of this
article. However, it is helpful to understand a few terms for the sake of intuition. The mathemati-
cal objective of any ML algorithm is to build a model that minimizes a loss function (aka objec-
tive function or error function). The loss function is simply a way to measure the error of a
model—to punish models for predictions that do not match the observed data. Certain loss func-
tions are better for certain tasks. For example, we might want the loss function for a medical diag-
nosis algorithm to punish models for false negatives more than false positives. In practice, the
default loss functions provided by statistical packages are usually sufficient. Throughout this arti-
cle, we use a loss function foundational for many classification problems: the log-loss function.’

“Once we have a model built by an ML algorithm, why cannot we use the model to make inferences about underlying
relationships in our data? The reason is that ML algorithms build a model based on how well it predicts the outcome,
not whether the model is “correct”. The algorithm may substitute the true explanatory variable with a highly correlated
variable that has no effect on the outcome in the real world. There are other issues as well, such as the fact that it is
difficult to calculate standard errors that account for how the model was selected. Thus ML algorithms’ strength
(flexibility fitting many different functional forms) can be an “Achilles’ heel” for inference (Mullainathan &

Spiess, 2017). Although causal inference is not the focus of this article, there has been some notable progress in
designing ML methods that can be helpful for causal inference under certain conditions. (Athey & Imbens, 2015;

Zhao & Hastie, 2019)

>The log-loss function is £(6)=—13".ylog[hg(x;)]+ (1—y,;)log[1 — he(x;)]. The symbol @ represents the model
parameters. The symbolh(x;), the “hypothesis”, represents the predicted probabilities of the model given an observation
X;. The symbols y; and n represent the outcome variable and the number of observations.
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It is also important to clarify differences between the following terms: “algorithm”,
the “model,” and the “loss function”. In this article, we refer to the “algorithm” as the
computational procedure that is used to build the “model”. The “model” is simply a
function that produces a prediction when given an input of observed data. The “loss
function” is used to evaluate the performance of the “model”. The online Supporting
Information Appendix S1 provides greater detail for conceptually understanding the loss
function.

2.2 | Step-by-step implementation framework

Armed with some foundational intuition, we now provide a step-by-step framework designed to
guide researchers implementing or evaluating ML. These steps outline a structured process for
adjusting algorithms until they produce models that perform well in out-of-sample data.
Although the term “machine” learning evokes images of machine autonomy, each step of the
process requires considerable human input. Table 1 summarizes the steps of the ML process,
human decisions required at each step, and guidance for how to evaluate the decisions that
have been made.

2.2.1 | Step 1: Select data and explanatory variables

Arguably, the first step of any empirical analysis is to select a dataset and the set of variables to
consider. As with other forms of empirical analysis, ML researchers are guided by prior litera-
ture in selecting the universe of variables to analyze. This decision is affected by the same sets
of considerations and biases affecting researchers of prior methods, even in highly qualitative
inductive research. As Suddaby (2006) states, “grounded theory is not an excuse to ignore the
literature...constantly remind yourself that you are only human and what you observe is a func-
tion of both who you are and what you hope to see” (Suddaby, 2006; pp. 634-635). Researchers
using ML for pattern discovery should heed the same caution in selecting variables, and should
document and motivate which variables selected. While the set of variables chosen can be moti-
vated by prior literature, the patterns (i.e., relationships between the variables) illuminated in
the inductive exercise may be novel.

2.2.2 | Step 2: Select an algorithm

The next step is to select an algorithm that will build the predictive model. The algorithm
attempts to find a model that minimizes error (i.e., the output of the loss function). In this arti-
cle, we will implement three ML algorithms: decision tree, random forest, and neural network.
Each algorithm uses a different computation procedure to build models for predicting y and has
unique strengths and weaknesses.

There is no secret recipe for selecting the algorithm that best fits a particular situation. In
practice, even experienced data scientists do not know ex ante which algorithm to use. Never-
theless, in this step, we provide rule-of-thumb guidance. Table 2 lays out the strengths and typi-
cal uses of some of the most popular ML algorithms. Considerations for algorithm selection
include:
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Regression or classification?

It is important to distinguish between regression problems (a continuous real-number depen-
dent variable, such as stock price) and classification problems (a categorical dependent variable,
such as filing for bankruptcy).® Some algorithms are suitable for both types of problems; they
are simply used to minimize different loss functions. For example, a decision tree classifier min-
imizes the log-loss function, but a decision tree regression minimizes mean squared error.”
However, using a decision tree classifier for a continuous dependent variable or a decision tree
regression for a categorical dependent variable will not produce optimal results.

(For classification problems) Linear separability

Some algorithms (e.g., support vector machines) are designed to isolate data points of one clas-
sification from data points of another classification by the widest possible margin. This method
is used when classifications of data points are linearly separable—that is, in which it is possible
to draw a line (or a plane/hyperplane) that separates the classes. In contrast, algorithms that
use the log-loss function may perform better when classes are not linearly separable. For exam-
ple, a plot with overlapping points labeled y = 1 and y = 0 with no clear line of separation
between the two is not linearly separable.

(For classification problems) Labels or predicted probabilities?

Predicting actual labels is a common task in practice (e.g., loan will default). However,
researchers using ML classification for exploratory pattern discovery may be more interested in
the model's predicted probabilities(e.g., loan has 0.26 probability of defaulting). Predicted proba-
bilities are translated into a label using a decision threshold (e.g., loans with predicted probabil-
ities >0.1 are labeled“default”). Algorithms that use the log-loss function are more appropriate
for probabilistic interpretation than, for example, support vector machine (SVM) algorithms
(which excel at hard categorization between distinct classes). Later, in this article's demonstra-
tion, we will stop one step before assigning a label using a decision threshold. This is because it
is nearly impossible to predict the exact time period when a specific person will leave a com-
pany. Instead, we compare what drives the relative probabilities of turnover in each time
period.

Consideration: Model capacity versus number of observations in data

With more data observations, we can use algorithms with greater “model capacity”. Model
capacity means fitting highly flexible functional forms to achieve higher predictive perfor-
mance. For example, a neural network algorithm has high potential model capacity, and can
theoretically be used to represent any nonlinear relationship. However, algorithms like neural
networks with higher model capacity require more data and expertise to prevent overfitting. A
highly complex neural network trained on a few hundred observations would inevitably overfit
the data. In fact, high capacity models like neural networks can underperform other algorithms
unless they are trained using large amounts of data.

®Classification problems may entail two categories (binomial classification) or more than two categories (multiclass
classification). u
"Mean squared error is - ¥;). It is technically possible to define custom loss functions, but that topic is beyond the

=
scope of this article. We rﬁerely want to clarify that many models can be used for both regression and classification,
depending on the loss function in question. In software implementations written in Python and R, implementing a model

automatically minimizes a default loss function (often log-loss for classification and mean-squared error for regression).
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2.2.3 | Step 3: Choose regularization and other hyperparameters

For each algorithm, we will set algorithm-specific constraints on the models it can build. Regularization
is any constraint that restricts the descriptive capacity of a model—essentially smoothing the functional
form to prevent overfitting (recall Figure 1). This is done by tuning (i.e., adjusting the values of) the reg-
ularization hyperparameters of the algorithm. A hyperparameter is any parameter of the algorithm that
is set before estimating the model. Hyperparameters are not learned from the data; they are assigned to
the model by the researcher. The ML algorithms we implement later in this article all have specific
hyperparameters, which can be “tuned” (i.e., adjusted) to avoid underfitting and overfitting. For exam-
ple, decision trees have “stopping rules” that limit the growth of the tree.

For some algorithms, an important hyperparameter is the choice of a “regularization
term” (or “penalty term”) to add to the loss function. Adding regularization terms to a loss
function controls for overfitting by punishing the loss function for putting too much predic-
tive weight on a variable. An example perhaps familiar to some researchers is the LASSO
regression. Supporting Information section 1 describes how a regularization term in the loss
function prevents overfitting.

What are the optimal values for the hyperparameters? Tuning hyperparameters is a delicate
balancing act between bias (underfitting) and variance (overfitting). To find this balance, we try many
hyperparameter values and see which combination produces a model that performs best out of sample.

2.2.4 | Step 4: Partition the data for out-of-sample model evaluation
(training, validation, and testing)

To evaluate out-of-sample performance, we see how well the model performs on a “validation
sample” distinct from the “training sample” used to train (i.e., estimate) the model. We tune
the hyperparameters of the algorithm that is “learning” from training data until its predictive
performance on the validation data is optimized. A final sample of data, the holdout test set, is
kept separate from both the training set and the validation set. We use this sample to get a final
estimate of predictive performance on data that were not used to train or validate the model
(Step 7). A reasonable rule of thumb is to partition the data randomly into either three subsets
(e.g., ~60% training, ~20% validation, and ~20% holdout test) or into two subsets (e.g., ~70%
training-validation and ~30% holdout test) to be used for k-folds cross-validation.®

Throughout this article, we use the second option, k-folds cross-validation. This method of
cross-validation is less sensitive to the idiosyncrasies of training and validation set selection,
though it is more computationally intensive. In k-folds cross-validation, the training-validation
data are split randomly into k equal-sized subsets of data. One by one, each of the k subsets is
used as the validation data; the other k — 1 subsets are used to train the model. The resulting
k estimates of the validation error (i.e., output of loss function) from each model are averaged
for the measurement of model performance. Taking an average is what makes model perfor-
mance evaluation less subject to idiosyncrasies in any single split of the data. Throughout this
article, we use 10-fold cross-validation (k = 10), a common choice for k.

8The relative size of the validation and test data can be smaller for large datasets. The key point is that the size of the
validation/test set is large enough to give reliable estimates of model performance. For example, if my dataset has a
billion observations, I may only need a thousand data points as a holdout test—much smaller than 20%.
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2.2.5 | Step 5: Apply preprocessing steps

Preprocessing the data—including “feature engineering” and handling missing data'°—is also
important for model predictive performance. It can be necessary to scale variables (i.e., features) for
algorithms that calculate distance between points (e.g., neighbor methods like KNN or support vec-
tor machines) or for algorithms that use a regularization term (e.g., neural networks and LASSO). If
not scaled, variables with larger magnitudes will overwhelm variables with smaller magnitudes as
the algorithm assigns weights. Variables are commonly divided by “z-scores” or “min-max” scores,
which strip units so that all numerical magnitudes are comparable across variables.

These preprocessing steps (e.g., normalizing values or missing value imputation) can leak infor-
mation from the validation or test data into the training data. Leakage causes the out-of-sample
evaluation metrics to be overly optimistic about the performance of the model. Therefore, these
preprocessing steps should be done after splitting the data into training/validation/test partitions.
Each preprocessing step should be “learned” from the training data, then applied to the validation
and test data. For example, if a variable is to be normalized by a “z-score”, then for each observation
X—mean (xm,jnmg)

(Xuaining)
(where SD refers to standard deviation). In the companion code for this article,> we demonstrate
how to preprocess the data in a pipeline, which makes preprocessing implementation simple.

in the training, validation, and test set, one should apply the following calculation:

2.2.6 | Step 6: Fit the model on the training set and evaluate
predictive performance on the validation set

Finally, we can use the algorithm to fit (i.e., estimate) a model. Statistical software written in R and
Python make it relatively easy to fit the model (see the code in Supporting Information section 3 as an
example). Under the hood, an optimization algorithm finds the function that minimizes error (output
of loss function) in the training data, subject to the hyperparameter choices and model constraints.
In-depth discussion of optimization algorithms is beyond the scope of this article—we leave
that to the statistical software. However, it is useful to be aware that some complex models
(e.g., neural networks), may locate local rather than global optima.’* A signal of the presence of

9“Feature” is another word for variables or functions of variables. “Feature engineering” refers to scaling, creating, or

modifying features (e.g., bucketing a continuous variable or interacting variables).

°Handling missing data can heavily influence model performance. Dropping observations with missing values can
severely limit the number of observations and may be misleading if the excluded data are systematically related to the
outcome variable. As a solution, missing values can be imputed. Missing numerical values can simply be replaced with
the variable's mean or median value, and missing categorical values can be replaced with the mode. Alternatively,
missing values can be replaced with an estimated value—that is, run a regression model to learn what values predict
the value for nonmissing observations and fill in missing observations with the predicted values. If a variable has many
missing values and is not central to the prediction, it may be best to simply drop the variable.

For example, one common algorithm is the gradient descent algorithm. Imagine that loss (i.e., error) as a function of
variables X is represented in 3D space by a landscape where peaks represent high loss and valleys represent low loss.
The gradient descent algorithm finds the steepest route down from whatever hill it is initially positioned on, and it stops
when it cannot descend any farther. Thus, for nonconvex optimization problems (e.g., rugged landscapes with multiple
minima) like neural nets, the initial values assigned to an algorithm can lead to substantially different predicted models.
For other algorithms (e.g., those that optimize for a linear hypothesis), the loss function is convex (i.e., a landscape with
one minimum), thus, this problem is not encountered. In general, however, the problem of multiple local minima can
be quite challenging.
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multiple local optima is that the model's fit results vary significantly with the choice of initial
parameter values. Although there is no simple solution to this problem, it can sometimes be
addressed with a better choice of initial parameter values or stronger regularization.

The fitted model is used to predict outcomes in the validation data, and the resulting predictions are
evaluated against the true outcomes in the validation data using a performance metric. Throughout this
article, we use the log-loss score (i.e., our model's error) as the measure of model performance.

2.2.7 | Step 7: Repeat steps 1-6, varying the algorithm, features,
hyperparameters, and regularization choices to maximize predictive
performance on validation set

It is difficult to know a priori the combination of algorithm, features, and hyperparameters that
will yield the best model. We try many different combinations, with the goal of finding the
model with the least error on the validation set. Often ML practitioners try as many combina-
tions as is feasible, starting with the simplest algorithms.

Although the objective is to minimize the model's loss (i.e., error) on the validation set, this valida-
tion loss should not significantly diverge from the training loss. Divergence of training and validation
loss is a sign that the model overfits the in-sample data at the expense of performance on out-of-sample
data. Figure 2 plots the training and validation loss of the random forest model predictions as a function
of one of its hyperparamters, “tree depth”. We trained and evaluated the model (using 10-fold cross-vali-
dation) eight separate times, varying the “tree-depth” hyperparameter values from 1 through 8. The
orange (upper) line represents the validation loss, and blue (lower) line represents the training loss of

Random Forest
0.080

0.075 A

0.070 A

0.065 A

0.060

Loss

0.055
0.050 -

0.045 | —— Training
Validation

0.040 T T T T T T
1 2 3 4 5 6 7 8
Tree Depth

FIGURE 2 Training and validation loss as a function of the random forest “tree depth” hyperparameter.
Note: The blue (lower) and orange (upper) lines represent training loss and validation loss for each value (1-8) of
the tree depth hyperparameter. Error bars represent cross-validation standard error confidence intervals. The
figure demonstrates the “elbow” where validation loss diverges from the training loss. Increasing the tree depth
removes constraint from the model, allowing it to better describe the data and thereby decrease loss. However,
removing too much constraint (i.e., increasing tree depth) can cause overfitting—where the model predicts well
in the training data but not in the validation data. It appears that setting the tree depth hyperparameter to 3 or
4 would yield the best generalizable predictions. Note that for illustrative purposes, this random forest algorithm
does not contain any regularization other than tree depth. The random forest algorithm used later in the paper
differs slightly due to adjustment of other regularization hyperparameters [Color figure can be viewed at
wileyonlinelibrary.com]
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the model predictions across these eight hyperparameter values. Because the random forest algorithm
has unbounded descriptive capacity in-sample, the training loss approaches 0 as regularization is elimi-
nated. It appears that the best choice for tree depth would be around 3 or 4—the choice at which both
training and validation losses are low, but the validation loss has not diverged from training loss.

Rather than manually tuning one hyperparameter at a time, many statistical packages
include support for “grid search,” “random search,” and “Bayesian search” techniques. These
systematically fit and evaluate the model using many combinations of a user-specified set of
hyperparameter values. Despite these tools, it is usually impossible to try every possible combi-
nation of algorithm, feature, and hyperparameter values. The actual process of tuning hyper-
parameters can be messy and iterative in nature. The code in the Supporting Information gives
a more detailed guide for implementing this process in practice.

2.2.8 | Step 8: Evaluate final predictive performance, and interpret
model

After selecting the best-performing model (in the validation data), we can evaluate final predictive
performance by applying the model to the holdout test set. Because this sample was not used to
train or validate in the previous steps, it represents the purest out-of-sample test available to evalu-
ate model performance. Performance of the model can be evaluated using various metrics and visu-
alizations (which we demonstrate on our data in Section 3). Ideally, the holdout test performance
should be statistically indistinguishable from the training/validation loss. If it is significantly worse
than the training and validation scores, then the model has been overfit to the training/validation
data. Therefore, the holdout test set is a primary safeguard against overfitting.

When applying ML for exploratory pattern discovery (the focus of this article), we can now
attempt to understand the model's structure. ML-built models can be hard to interpret when they
contain nonlinearities and interdependencies among explanatory variables. However, visualization
tools like partial dependence plots can be extremely helpful (we demonstrate this in Section 3). We
cannot always take patterns in the models at face value, or treat them as causal relationships. But
the patterns that are robust across multiple ML algorithms can be very informative.

3 | DEMONSTRATION: DISCOVERING PATTERNS IN
EMPLOYEE TURNOVER

3.1 | Data and setting

In our demonstration, we attempt to discover employee turnover patterns in a large Indian
technology firm, TECHCO. The internal dataset covers the 1,191 entry-level employees that
were deployed to any of TECHCO's nine geographically dispersed production centers in 2007.
The data are structured as a panel of one observation for each month that an individual is
employed at the company for up to 40 months. The data include 36,978 observations from 1,191
employees total; 25,925 observations from 833 employees in training/validation; and 11,053
observations from 358 employees in the holdout test sample. The dependent variable, Turnover,
indicates whether the employee left during that time period (y = 1 if turnover, y = 0 if non-turn-
over). Our goal is to estimate the probability of turnover for a given employee at a given time.
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TABLE 3 Summary statistics
Training/validation sample Holdout test sample
N Mean SD N Mean SD
Turnover (left this month) 25,925 0.013 0.113 11,053 0.013 0.115
Time (months since start) 25,925 17.569 10.560 11,053 17.530 10.545
Training performance 25,925 4.546 0.320 11,053 4.528 0.328
Logical score 25,925 4.777 3.658 11,053 4.899 3.674
Verbal score 25,925 4.255 4.012 11,053 4.409 3.630
Average home region literacy 25,925 76.755 8.126 11,053 76.219 8.210
Production-center age 25,925 14.742 7.576 11,053 14.940 7.621
Distance 25,925 0.764 0.692 11,053 0.808 0.684
Language similarity 25,925 60.867 35.362 11,053 58.223 34.829
Male 25,925 0.652 0.476 11,053 0.633 0.482

Note: This table includes summary statistics for the unbalanced panel used throughout the paper. The total sam-
ple had 36,978 panel observations, one for each employee-month. The table displays separate summaries to com-
pare the training/validation and test holdout samples. In the table, N refers to the number of observations, Mean
refers to the mean value, and SD refers to standard deviation of the values.

Choice of explanatory variables was motivated by considerations outlined in the prior theoretical
(Jovanovic, 1979) and empirical literature (e.g., Campbell, Ganco, Franco, & Agarwal, 2012; Carnahan,
Kryscynski, & Olson, 2017) on employee turnover. These include employees’ performance scores in an
intensive three-month onboarding training course (Training Performance), the time in months spent at
the company (Time), university verbal and math test scores (Verbal Score and Logical Score), date of
arrival at the company (Month Arrived), and demographic information. The data also include the
assigned production center's age (Production Center Age), its distance from the employee's hometown
(Distance), and the similarity of the prevailing language in the production center's region in India to that
of the employee’s hometown (Language Similarity). Table 3 provides basic summary statistics.

3.2 | Stylized implementation: Decision tree algorithm
To develop intuition for how ML algorithms work, we apply a decision tree (a relatively simple

ML algorithm) to our data. We will also fit two other algorithms, a random forest and a neural
network, to compare patterns in the data across multiple algorithms.'* Conceptual and

12We chose these three algorithms for two reasons. First, they are widely used general purpose algorithms that
pedagogically demonstrate a variety of ML algorithm attributes: the decision tree is easily interpretable, the random
forest is a highly useful general-purpose algorithm that demonstrates ensemble techniques, and the neural network is
the basis of many modern technological applications of ML. Second, these algorithms can be specified to optimize the
log-loss function. The log-loss function is suitable to our data because we are most interested in comparing the
probabilities of turnover rather than the predicted outcome labels. Because the probability of any given employee
leaving in a particular month is extremely low, it is very difficult to predict exactly when someone will leave. The
purpose is not to draw clear boundaries between classes (i.e., binary predictions such as y=1 or y=0), but to learn
relative probabilities.
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implementation details (including code) for those algorithms are included in the Supporting
Information section 3.

The decision tree algorithm builds a model by repeatedly splitting the data into two distinct
subsets based on the values of one explanatory variable. Each subset is assigned a single value
for the predicted outcome. Each split is determined based on what will minimize the model's
total error (i.e., output of the loss function). Within each new subset, the procedure is repeated,
splitting the data along one variable at a time to minimize the error within each subset. Each
split can be represented visually as a node with two branches, creating the overall impression of
a tree. A “root node” represents the first split, and “leaves” are terminal nodes with a predicted
value for each subset of the data. To control for overfitting, the model is regularized by “stop-
ping rule” hyperparameters that limit growth of the tree—for example, by limiting the maxi-
mum depth of the tree.

Figure 3 is a visual representation of the decision tree model applied to the TECHCO turn-
over data.’® One of the desirable attributes of decision tree algorithms is the ease of visualiza-
tion of the resulting model. For example, the top node (the “root node”) of the tree in Figure 3
is labeled Training Performance < 3.995. Thus, the single split that maximized predictive perfor-
mance was to separate the data into the 25,557 observations whose training performance score
exceeded 3.995 from the 338 observations whose scores were below 3.995.* Following the left-
hand branch of the tree (labeled “True”), we see that within the 338 observations with low
training performance, the split that maximizes predictive performance splits observations with
Time <6.5(months) from those >6.5 (months) and so on.

This decision tree reveals an interesting pattern: the tree splits along only two dimensions,
Training Performance and Time. This pattern is indicative that these dimensions may be charac-
terized by important nonlinearities and interactions. Furthermore, the terminal nodes on the
bottom left (with Training Performance < 3.995, Time < 6.5, and Time > 4.5) have a much
higher proportion of turnover than any other terminal nodes. This offers clues about interesting
heterogeneous effects in subsets of the data. But for now, we avoid too much interpretation
based on this figure alone. The specific branches and leaves of a single decision tree can look
dramatically different for different samples of the same dataset.

To triangulate these insights with other models, we also implemented a random forest
(essentially a combination of many decision trees)and a neural network. For conceptual details
on those algorithms, refer to Supporting Information section 2. We will compare all three
models’ performance and structure in the following sections of the paper.

3.3 | Metrics and visualizations for evaluating model predictive
performance

Evaluating a model's predictive performance is essential not only for prediction problems, but
also for evaluating how useful a model is for exploratory pattern discovery. Before examining

3After tuning the model by trying many combinations of possible hyperparameter values, our best performing decision
tree model used the “entropy” criterion of determining splits, required each leaf to have at least 27 observations, and
allowed splits only if the decrease in loss (error) was greater than 0.0004.

“These numbers represent those in the training data sample, out of the full sample of 36,978. Although our dataset is
based on 1,191 employees tracked over 40 months, the number of observations is not a full panel of 1,191 x 40 = 47,640.
This is because the data stops tracking employees who leave, so those who leave before month 40 have fewer than

40 observations.
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Training Performance <= 3.995
entropy = 0.1
samples = 25925
value = [25587, 338]

True

False

Time <=6.5

entropy = 0.434

samples = 403

Time <= 11.5
entropy = 0.093
samples = 25522

value = [367, 36] value = [25220, 302]

A y
entropy = 0.123 entropy = 0.024
samples = 178 samples = 8651
value = [175, 3] value = [8631, 20]

Time <=56.5
entropy = 0.997
samples = 66
value = [35, 31]

entropy = 0.831 entropy = 0.811
samples = 38 samples = 28
value = [28, 10] value = [7, 21]

FIGURE 3 Decision tree model. Note: This image depicts a decision tree model that was trained to predict
the dependent variable Turnover (1 if turnover occurs in a given time interval, 0 otherwise). The label samples
within each node denotes the number of observations within the subset of data represented by that node. For
example, the top “root node” contains all 25,925 training observations. Adding all the values of samples in the
terminal “leaf nodes” also sums to 25,925. The label value within each node denotes the number of non-turnover
events and the number of turnover events within that node. For example, the terminal node on the bottom left

Time <= 4.5
entropy = 0.601
samples = 225

value = [192, 33]

Time <= 30.5
entropy = 0.123
samples = 16871

value = [16589, 282]

entropy = 0.097 entropy = 0.103 entropy = 0.183

samples = 13050 samples = 3821

p
[Value =[12874, 176]) [value =[3715, 106J

samples = 159
value = [157, 2]

reads value = [28,10]. This indicates that of the 38 observations, 28 were non-turnover (y = 0) and 10 were
turnover (y = 1). The probability of turnover for these observations can be represented as a probability of
turnover (10/38 = 0.26) given the attributes on the path to the node. This image was created by graphviz in
Python (see the code in Supporting Information section 3)

the structure of models for exploratory data analysis, models should be optimized to per-
form well. This helps ensure that researchers are using models based on some objective
criteria rather than simply selecting the ones that confirm their priors. Final performance
on a holdout test set can be reported using various metrics. For regression problems, a com-
mon metric is mean squared error. Common metrics for classification include the log-loss
score, accuracy, true positive rate (i.e., recall), false-positive rate, positive predictive value
(i.e., precision), F; score (i.e., harmonic mean of precision and recall), average precision
(area under the precision-recall curve), and the area under the receiver operating character-
istic curve (AUC) score.

It is common to think of predictive performance in terms of accuracy (CorectPredictions) yet
accuracy can be misleading, particularly when there is imbalance in the classes. For example,
consider a sample in which only 1% of observations are blue and 99% are red. A model that
always predicts “red” will be highly accurate at 99%. But that model will not be very useful,
especially if it is very important to detect which observation is “blue”.
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In many situations, a better way to think about classification predictive performance is to
visualize a confusion matrix (Table 4). The confusion matrix is helpful for conceptualizing how
to balance the rate of false negatives and false positives predicted by a classifier. In different
contexts, we may choose to prioritize one or the other. For example, when the downside of
missing true positives is high (e.g., detecting rare diseases) we may choose to give more weight

True Positive : . .

to recall (Fcpositves False Negative). Conversely, when recommending TV shows, precision
True Positive . : . . .

(TracPositive + Falss Positive ) May be more heavily weighted. Metrics like theF,score are designed to

strike a balance between precision and recall. Besides summary metrics, we also demonstrate
the ROC curve visualization, which can be helpful for richer evaluations of the balance between
true and false positives and negatives.

3.3.1 | Plot of ROC curve

Like the confusion matrix, the receiver operating characteristics (ROC) curve helps us visualize how
well the model distinguishes between different classes (Figure 4). The curve compares the model's
true pOSitiVG rate (True Posg/l:e:i(ggfls\legaﬁve\é againSt the false pOSitive rate (False Posli:glzseesiols‘irﬂ\ejelflegatives )’
varying the cutoff threshold for distinguishing between classes. For example, in the bottom left-
hand corner, no observations are classified as y=1 because the predicted probability of y = 1
would have to be >1. The classification threshold is lowered until in the top right corner the
predicted probability of y = 1 is >0, so everyobservationis classified as y=1.

Intuitively, a model that classified each observation randomly would produce points along
the dotted 45° line (i.e., equally likely to classify an observation as a true or false positive).
Points above the diagonal line represent better-than-random classification results, and points
below the line represent a classification results that are worse than random. A perfect predictive
model would include a point in the very top left corner, representing a model that could give no
false negatives and no false positives.

The area under the curve (AUC) metric can be used to summarize the ROC curve. The
AUC score represents the actual area under the ROC curve. This number can also be inter-
preted as the probability that the model will rank a randomly chosen y = 1 observation higher
than a randomly chosen y = 0 observation. In Figure 4, the random forest model has an AUC
score of 0.746. Achieving a significantly better score with these data may not be possible
because there is no hard boundary between turnover (y = 1) and non-turnover (y = 0)

TABLE 4 Confusion matrix

Predicted
Actual Negative (y=0) Positive (y=1)
Negative (y = 0) True Negative False Positive
Positive (y = 1) False Negative True Positive

Note: The confusion matrix is an important tool for evaluating performance when ML predictions are for actual classi-
fication labels (e.g., assigning each observation a label y=1 or y=0 based on a decision threshold for predicted prob-
abilities). For the demonstration in this article, we are more interested in predicted probabilities (e.g., 0.4
probability of y = 1) than in assigning labels (e.g., y=1 or y=0).
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FIGURE 4 ROC curve. Note: The blue line plots the true positive rate (frm pos fﬁf;}isff\]egaﬁves) and false positive
rate (g Posli:girse:esl-:-ql%:'t\;zel\iegatives) as the classification threshold is varied. The red dotted 45° line represents a model that

randomly classifies each point (that is equally likely to classify someone as a true or false positive). Points above the
diagonal line represent better-than-random classification results, and points below the line represent a classification
results that are worse than random. A perfect predictive model would have a point in the very top-left corner,
representing a model that gave no false negatives and no false positives. The area under the curve (AUC score) of 0.746
means that there is a 0.746 probability that the random forest model will rank a randomly chosen positive observation
higher than a randomly chosen negative observation. For our data, this is probably close to the highest possible score
with any model because there is no hard boundary between y = 1 and y = 0 observations (i.e., the underlying
probability of turnover is less than 1 for all observations, rather than 1 in some regions and 0 in other regions) [Color
figure can be viewed at wileyonlinelibrary.com]

observations. That is, the underlying probability of turnover is less than 1 for all observations,
rather than 1 in some regions and 0 in other regions.

3.3.2 | Plot of training and cross-validation error (loss)

When a model's error (loss) on the training set is significantly lower than the validation set, the model
may be overfitted. Figure 5 plots the training and validation loss of each model. For comparison, the plot
also includes the loss from a baseline logistic regression(which includes a coefficient for each explana-
tory variable plus month fixed effects). The position of points on the plot indicates the training and
cross-validation loss of each model; error bars are calculated from a standard deviation variation among
k-folds. The figure helps us clearly visualize which models may be overfitted; anything above the dashed
line has higher validation loss than training loss, a sign of overfitting. It appears that the random forest
could be in danger of having been overfitted to the training data (it is above and to the left of the dashed
line). However, the performance on the holdout test loss was 0.0633—very close to the validation loss.
This mitigates the concern that the model's overfitting is hurting its out-of-sample performance.

The figure shows that random forest and decision tree algorithms both offer small perfor-
mance increases over the baseline logistic regression. The explanation for such small gains in
performance is that meaningful interactions and nonlinearities among variables are only rele-
vant for a small subset of the data. Furthermore, points labeled as turnover events (y = 1) signif-
icantly overlap with points labeled as non-turnover events (y = 0), making it difficult to predict
precisely which points are one or the other. In this case, these ML models may be more useful
for pattern discovery than for predictive performance gains.
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FIGURE 5 Plots of training and validation loss for each model relative to logistic regression. Note: This plot
displays the training and validation loss for each model, including the baseline logistic regression model. Points
toward the lower-left corner are better predictions (lower loss). Error bars represent a standard deviation variation in
predictions yielded by the k-folds cross-validation. The dashed line represents a line along with the loss from the
training set is equal to the loss on the validation set. Points above and to the left of the line represent models for
which the validation loss is higher than training loss, indicating that the model may be overfitted on the training data
[Color figure can be viewed at wileyonlinelibrary.com]

3.4 | Interpreting models using variable importance and partial
dependence plots

After finding a high performing model, we can use the model to find interesting patterns. Many
ML models are complex and can be difficult to interpret. Some models (e.g., LASSO) return
familiar coefficients, and some (e.g., random forest) return relatively easily interpretable mea-
sures of variable importance. Other algorithms (e.g., neural networks) contain no intrinsic mea-
sure of how much each variable impacted the predicted outcome. However, regardless of the
algorithm or the complexity of the model, we can interpret a model using partial dependence
plots. These plots can be used to visualize the marginal effect of one or more variables on the
predicted outcome of the model (Friedman, 2001; Zhao & Hastie, 2019).

3.4.1 | Variable importance

Although not as rich as partial dependence plots, examining variable importance (when possi-
ble) is a reasonable first step for interpreting ML models. Variable importance can be calculated
in different ways for different algorithms, but it generally shows how useful each variable was
for predicting the outcome.”® The scale is not meaningful—only relative comparisons matter.
Figure 6 plots relative variable importance for our random forest model. These variable impor-
tance values should not be interpreted like econometric coefficients but can be used to give

5For tree-based algorithms, variable importance is often calculated as the average decrease in node impurity each time
a variable was used to split a node. Node impurity is a measure of the likelihood of misclassifying an element in the
subset if it were randomly labeled according to the distribution of labels in the subset. Intuitively, a node for which all
the data are labeled as “1” has low impurity. A node for which half the data are labeled “1” and half labeled “0” would
be high impurity.
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Variable Importance FIGURE 6 Variable importance. Note:
This figure represents the “variable
importance” (aka “feature importance”) of
each variable in the random forest model.

=4
o

=
o

This is calculated as the average decrease
in node impurity across all the variable's
nodes, weighted by the probability of
reaching that node (i.e., number of samples
that reach that node divided by total
samples). Variables with higher values are
more important. Scale is relative, and the
sum of all values adds up to 1 [Color figure
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clues for which variables to explore. Figure 6 clearly shows that Training Performance and Time
warrant further exploration using partial dependence plots

3.4.2 | One-way partial dependence plots and individual conditional
expectation plots

One-way partial dependence plots (PDPs) show how a model's predicted outcome varies
in response to changes in a single explanatory variable (conditional upon other variables).
A major advantage of these plots is that they can show the shape of the relationship
between the variable and the outcome. Intuitively, the partial dependence function at a
particular point on the x-axis represents the average prediction if all data points had that
x value.

Yet taking an average can hide heterogeneous effects among individuals. Instead, we can
plot the predicted outcome's dependence on an explanatory variable separately for each individ-
ual in the data. This method is known as the individual conditional expectation (ICE) plot
(Goldstein, Kapelner, Bleich, & Pitkin, 2015). Each line of an ICE plot shows what the model
predicts for an individual if we changed the values of one particular variable. The PDP is simply
the average of all the lines of an ICE plot. ICE plots are particularly useful tool for detecting
when a variable's effect on the outcome is highly interdependent with other variables. When
individual ICE lines are parallel this signifies that there are no complex interdependent rela-
tionships with that variable in the model.

Figure 7 displays the overall PDP and individual ICE lines as a function of a few select vari-
ables in our random forest model. We also plot a baseline logistic regression model side-by-side
for comparison. This model included each of our explanatory variables plus Time fixed effects.
Figure 7 demonstrates how, by construction, the predicted outcome has a linear relationship
with each variable (except Time fixed effects) in the logistic regression.

In contrast, the random forest model reveals interesting nonlinear relationships. In
this model, Training Performance was unrelated to probability of turnover, except for a
sharp discontinuous jump for scores lower than 4.0. In the Time plot, there are a few ICE
lines that have drastically higher probability of turnover at around 6 months. This hints
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FIGURE 7 One-way partial dependence plots. Note: This figure overlays a one-way partial dependence
(PDP) plot and individual conditional expectation (ICE) lines. The dependent variable is employee turnover

(y = 1 if employee left in that period). Logistic regression predictions appear in the left-hand plots; random forest
predictions appear in the right-hand plots. Each vertical axis is on the same scale, with units as the log of the
odds ratio of the predicted probability of turnover. The ICE lines were generated by randomly selecting

500 samples from the full dataset and, for each sample, predicting the outcome using 40 values of the variable
across the entire variable range while holding all other variable values fixed. The predictions from each sample
are represented by an orange (solid) line across the entire range. The result is a distribution of 500 orange ICE
lines, one for each sampled observation. Each plot also shows the average of the ICE lines (the overall PDP) as
the dotted blue line [Color figure can be viewed at wileyonlinelibrary.com|

at heterogeneous effects for Time that are interdependent with the values of other explan-
atory variables. We can use two-way partial dependence plots to explore these
interdependencies.
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3.43 | Two-way partial dependence plots

To explore nonlinear interactions between two explanatory variables’ effect on the
predicted outcome, we can use two-way partial dependence plots. The intuition is the same
as one-way PDPs. We average the model's predicted outcomes for each combination of
values between two variables for each individual (holding other variable values constant).
The advantage of this approach is it is easy to see interactions between explanatory vari-
ables. The disadvantage is we cannot see whether these effects are heterogeneous between
individuals (as in the ICE plots).

Figure 8 displays the predicted probability of employee turnover for each ML model as a
function of Training Performance and Time. Again, for comparison, we include a baseline logis-
tic regression that includes each explanatory variable and Time fixed effects. We discover sev-
eral interesting patterns. In the decision tree model plot, a conspicuous line separates Training
Performance <3.995 from Time <6.5 (exactly as in Figure 3). The random forest model offers
similar insights—that the probability of turnover tends to increase over time, and is much
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FIGURE 8 Two-way partial dependence plots. Note: These two-way partial dependence plots represent the
probability of turnover predicted by each model along the dimensions Training Performance and Time. Higher
probabilities of turnover are represented in yellow; the lowest probabilities are represented in dark blue. All
plots are on the same scale. For each observation in the dataset, we used our models to predict the probability of
turnover for each point represented by each combination of 40 evenly spaced values of both Training
Performance and Time (resulting in a grid of 1,600 points total). The final estimated probability for each point on
the grid is the average estimated probability across all observations for that point on the grid. Two-way PDP's of
other variables did not reveal meaningful interactions or nonlinearities [Color figure can be viewed at
wileyonlinelibrary.com]
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higher for those with a training score below about 4, especially around 6 months. The global
negative effect of training performance on turnover estimated by the logistic model (Figure 7)
must have been driven by the narrow yellow strip of employees with training scores below 4 at
about month 6.

3.5 | Comparing ML models to a baseline regression model

How does a baseline regression model fare discovering patterns from these data? A striking
insight from Figure 8 is how poorly the logistic regression modeled the probability of turnover
as a function of Training Performance and Time. The other models all predicted dramatically
higher turnover probabilities for employees with low training scores during their first months
on the job. The logistic regression model, however, can only yield a linear fit as constrained by
the linear functional form we specified for the model. It can only tell us that on average those
with lower Training Performance tend to have a higher probability of turnover (with constants
added for each time interval from the Time fixed effects).

In fact, this negative relationship only exists for a very small fraction of the sample (the
40 out of 833 who had training scores below 4 in the training sample). The relationship between
Training Performance and probability of turnover appears to be positive for the majority of the
population. The logistic regression fails to capture important nuances because Training Perfor-
mance was not explicitly modeled as a function of Time in the specified model. This finding
demonstrates the potential cost of naively estimating global linear relationships when there are
many unknowns in the data.

Of course, it is possible to use the logistic regression to test nonlinear or interactive relation-
ships by adding transformed variables to the model. For example, we may add a quadratic term
to test a U-shaped relationship, or multiply two variables to test an interaction effect. But,
which terms should be included? Researchers informed by theory may model such complexities
based on known relationships. However, it is often unknown a priori how best to model each
variable, and the number of combinatorial possibilities increases rapidly as more variables are
considered. ML presents a solution to the problem of knowing how to model the data.

4 | AVOIDING COMMON MISINTERPRETATION PITFALLS

Like any tool, ML can be used well or used poorly. In addition to the guidance we have given
throughout the article, it is worth explicitly stating a few common misinterpretation pitfalls.
Many of these pitfalls are not inherent properties of ML, but rather result from misinterpreta-
tion of ML by its users and audiences.

Confusing correlation with causation is perhaps the biggest potential problem of using
ML. The patterns uncovered by the algorithm should be considered merely correlational until
convincingly proven to be causal, using other means. This article advocates for ML to explore,
not test, relationships in data. That said, there are certain circumstances under which we can
use PDP and other tools to causally interpret ML models (Zhao & Hastie, 2019).'®

16Specifically, Zhao and Hastie (2019) propose that a partial dependence plot captures the causal effect if it can be
shown that the “backdoor criterion” is met. That is, adjusting for all factors that influence both X and y allows a causal
interpretation of PDPs.
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Algorithmic bias Data can be inherently biased,'” for example when the data is selected
based on convenience, or suffers from the feedback loop of prior human biases (Cowgill &
Tucker, 2019). This can also occur when the data suffer from “input incompleteness”—gaps in
the data input related to incentives of human agents, that lead to biased prediction
(Choudhury, Starr, & Agarwal, 2018). Effective ML users should be familiar with the data-
generating process and research context to avoid biased interpretations. For an excellent review
of how to address issues of algorithmic bias, see Cowgill and Tucker (2019).

Over-interpreting variable weights of ML models is also a common mistake. The effects of
variables in ML models may heavily depend on other variables in the model. In the wrong
hands, negative weight on a variable in an ML model can have “enormous, undeserved rhetori-
cal heft” (Cowgill & Tucker, 2019; p. 43). For example, Amazon was ridiculed for using an algo-
rithm that included a negative weight for graduates of two all-women's colleges. Yet it was
unclear how they were weighted relative to other women's or men's colleges.'®

Cherry picking or data dredging Data dredging is the practice of cherry-picking interesting
relationships from a large set of variables (Selvin & Stuart, 1966). Data dredgers try to draw
attention to the cherry-picked relationships without acknowledging the process by which they
were found. This can easily lead to identifying spurious relationships.

Multi-collinearity arises when variables in a model are highly correlated. For example, when
many highly correlated variables are included in a LASSO regression, the model structure will be
highly unstable (Mullainathan & Spiess, 2017). Highly correlated variables contribute redundant
information to a model, so algorithms may randomly assign weight in the model to one variable or
another. In our data, for example, if the employees’ Verbal Score had been highly correlated with
Training Performance, some models might have indicated a large effect of Verbal Score on turnover
and none in Training Performance. The problem of multicollinearity becomes more serious with
more variables and more highly correlated variables. To mitigate this problem, it can help to include
a table of correlations between variables (which we do in Supporting Information S3). It also helps
to demonstrate that patterns are robust across models built by multiple different algorithms.

p-Hacking In general, p-hacking refers to the practice of adjusting models until they statistically
confirm some desired effect. Relative to traditional methods, ML is less likely to be susceptible to p-
hacking because it has built-in safeguards—the validation and holdout test sets. After all, p-hacking
is essentially the same as overfitting the training sample, and any model that is overfit on the train-
ing data will perform poorly on the validation and/or holdout test set. Comparing the training per-
formance to the validation data and/or holdout test set informs us how well the model generalizes
to out-of-sample data. Models that have not been overfit will have similar error for training, valida-
tion, and holdout test samples. For this reason, we recommend that reviewers always require these
comparisons. It is still possible that a researcher would select among a handful of different models
which perform equally well on the holdout test set. Therefore, we also suggest triangulating on an
underlying model by presenting models from multiple ML algorithms.

HARKing Lastly, we caution against testing ML-identified patterns using the same dataset
as though they were pre-specified hypotheses. This would be a form of hypothesizing after the
results are known (HARKing), which is a violation of the assumptions of deductive hypothesis
testing (Kerr, 1998). Instead, newly generated hypotheses should be tested on new data with
exogenous variation to prove causal claims.

"Note that “algorithmic bias” refers to biased data—not the same as balancing the bias-variance tradeoff.
18« Amazon scraps secret Al recruiting tool that showed bias against women,” Reuters 2018, as quoted in Cowgill and
Tucker (2019).
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This article began with two goals: (a) to demonstrate the application of supervised machine
learning methods for discovering robust patterns in quantitative data, and (b) to provide guid-
ance on evaluating research that uses such methods. Discovering new and robust empirical pat-
terns can help management scholars by acting as an “observation” for engaging in abductive or
inductive research. These patterns can later be deductively validated using traditional causal
inference techniques. Pattern discovery can also be used in post hoc analysis of traditional
regression results to detect patterns that may have gone unnoticed.

We are not the first to suggest that ML methods can be used for pattern discovery in
research. In the physical sciences, researchers have used ML methods to uncover underlying
relationships in physical phenomena (Hirsh, Brunton, & Kutz, 2018; Rudy, Alla, Brunton, &
Kutz, 2018; Rulff et al., 2017). In the social sciences, researchers have evangelized what they call
“forensic social science” (Goldberg, 2015; McFarland, Lewis, & Goldberg, 2016). They argue
that rather than testing variations of prespecified hypotheses, ML can help us make new discov-
eries using digital trace data. Management scholars are also beginning to promote the idea that
ML can help inductively develop a new theory (Puranam, Shrestha, He, & von Krogh, 2020).

Yet to date, there has been lack of practical guidance for transparently and effectively apply-
ing these methods in our fields. Given the guidance in this article, we are excited about the
potential future of ML methods. One exciting future application is the use of ML as new tools
to aid researchers in theorizing from quantitative data. This brings quantitative empirical
researchers closer to the tradition of grounded theory in which researchers theorize models
based on patterns in data (Bamberger & Ang, 2016; Eisenhardt, 1989; Glaser & Strauss, 1967).
In our view, the ML methods do not build theory itself—rather they represent observational
tools that the researcher can use to build theory. For example, a recent paper successfully pairs
ML with qualitative case studies to develop new theory about optimal revenue models in iOS
apps (Tidhar & Eisenhardt, 2020).

As an increasing number of management scholars use these methods for pattern discovery in
their research, it is important to evaluate the choices made by researchers in using these methods.
To reiterate, the implementation of ML methods for pattern discovery involves human agency and
the researcher has to make important choices relative to several actions: (a) selecting data,
(b) selecting algorithms, (c) setting hyper-parameters, (d) splitting training and validation data,
(e) preprocessing, and (f) selecting metrics to measure predictive performance of the models. We
provide guidance on all these choices. Additionally, given that ML methods do not generate the
familiar coefficients with confidence intervals, we illustrate tools such as partial dependence plots,
plots of training and validation loss and the ROC curve that could be used both by the researcher
and the reader to visualize, interpret and evaluate the robustness of patterns discovered.

Throughout this article, we have highlighted that because ML algorithms do not produce
statistically consistent coefficient estimates or reliable standard errors, they should not be used
for traditional deductive hypothesis testing (Mullainathan & Spiess, 2017). Rather, the use of
ML models to discover patterns should be seen as an exploratory exercise. Thus, we present ML
as a complement to, not a substitute for, traditional econometric methods. Misunderstanding
this point can lead to severe misinterpretation. We also emphasized caution against common
pitfalls such as being subject to biases in the data, data dredging, p-hacking, and HARKing.

In conclusion, we demonstrate how ML methods can be a helpful exploratory tool to iden-
tify robust patterns in quantitative data. These patterns can be helpful for researchers engaged
in data-driven abductive or inductive scientific discovery. We provide tools for implementing
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and visualizing ML analyses, and guidance for interpretation and evaluation. We also provide
detailed code to help future researchers. We look forward to the potential of ML as a methodo-
logical framework in future empirical management research.
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