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Abstract. Past research offers mixed perspectives on whether domain experience helps or
hurts algorithm-augmented worker performance. Reconciling these perspectives, we theo-
rize that intermediate levels of domain experience are optimal for algorithm-augmented per-
formance, due to the interplay between two countervailing forces—ability and aversion. Al-
though domain experience can increase performance via increased ability to complement
algorithmic advice (e.g., identifying inaccurate predictions), it can also decrease performance
via increased aversion to accurate algorithmic advice. Because ability developed through
learning by doing increases at a decreasing rate, and algorithmic aversion is more prevalent
among experts, we theorize that algorithm-augmented performance will first rise with in-
creasing domain experience, then fall. We test this by exploiting a within-subjects experiment
in which corporate information technology support workers were assigned to resolve prob-
lems both manually and using an algorithmic tool. We confirm that the difference between
performance with the algorithmic tool versus without the tool was characterized by an in-
verted U-shape over the range of domain experience. Only workers with moderate domain
experience did significantly better using the algorithm than resolving tickets manually. These
findings highlight that, even if greater domain experience increases workers’ ability to com-
plement algorithms, domain experience can also trigger other mechanisms that overcome
the positive ability effect and inhibit performance. Additional analyses and participant inter-
views suggest that, even though the highest experience workers had the greatest ability to
complement the algorithmic tool, they rejected its advice because they felt greater account-
ability for possible unintended consequences of accepting algorithmic advice.

History: This paper has been accepted for the Organization Science Special Issue on Emerging Technolo-
gies andOrganizing.

Supplemental Material: The online appendix is available at https://doi.org/10.1287/orsc.2021.1554.
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Introduction
It is increasingly common for knowledge workers in
organizations to use algorithmic1 tools to augment
their work. Though algorithm-augmented work is
not new, recent advances in artificial intelligence
(AI) and machine learning (ML) technologies have
increased the scope of tasks that can be algorithmi-
cally augmented. For example, there has been a no-
table increase in adoption of ML-trained algorithmic
decision tools by managers, clinicians, and judges, to
help them make decisions about hiring personnel,
diagnosing diseases, and assigning bail (Miller 2015;
Cowgill 2018a, b; Kleinberg et al. 2018; Arthur and
Hossein 2019). In the wake of this phenomenon, an
emerging research agenda has begun to investigate
the task performance of humans augmented by algo-
rithmic tools (Shrestha et al. 2019, Choudhury et al.
2020b).

A strand of this literature compares the accuracy of
algorithmic and human judgment, and examines
whether humans will accept and use algorithmic ad-
vice. This line of research typically demonstrates the
superior accuracy of even simple algorithms over ex-
perts (Dawes 1979, Grove et al. 2000, Kleinberg et al.
2018, Miller 2018). In many cases, people would make
better decisions if they used the algorithm’s recom-
mendations. Yet people—especially experts—tend to
exhibit “algorithmic aversion,” and rely more on their
own judgment than the advice generated by an algo-
rithm (Dietvorst et al. 2015, Logg et al. 2019). This
research paints a bleak picture for the prospect of pro-
ductively combining algorithmic recommendations
with human expertise.

Yet, a puzzle emerges when we compare this view
against prior literature on human capital and techno-
logical change. In contrast to the algorithm aversion
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literature, the human capital literature suggests that
human domain experience complements algorithms.
Human complementarity with algorithms arises from
humans’ relative advantages in using tacit knowledge,
causal reasoning, better understanding of context, and
human values to make judgments (Autor 2015;
Agrawal et al. 2018, 2019; Brynjolfsson and Mitchell
2017; Brynjolfsson et al. 2018). This allows humans to
identify when algorithms make inaccurate predictions
due to biases in training data and/or algorithms, over-
fit models, or random error (Shrestha et al. 2019,
Choudhury et al. 2020a, Raisch and Krakowski 2020).
Because domain experience increases these comple-
mentary human abilities (Dane et al. 2012), human do-
main experience is an essential component to produc-
tively complementing algorithms (Choudhury et al.
2020b). Tensions between this view and the algorithm
aversion literature motivate us to ask: under what con-
ditions does a knowledge worker’s domain experience
increase algorithm-augmented performance, relative
to self-performance?

To disentangle when domain experience hurts or
helps algorithm-augmented performance, we theorize
a framework that integrates two previously distinct
countervailing forces—ability and aversion—which
vary in their influence on algorithm-augmented per-
formance for workers with different levels of domain
experience. On one hand, we expect domain experi-
ence to increase a worker’s algorithm-augmented
performance due to an increased ability to judge the
accuracy of an algorithm’s advice. On the other hand,
workers with more domain experience can exhibit
more aversion to accepting helpful algorithmic advice,
thereby decreasing performance. We posit that be-
cause ability developed through learning by doing in-
creases at a decreasing rate (Becker 1962, Foster and
Rosenzweig 1995, Mithas and Krishnan 2008) and al-
gorithmic aversion is relatively more prevalent among
experts (Logg et al. 2019), algorithm-augmented per-
formance (relative to self-performance) will first in-
crease with domain experience for workers with low
levels of domain experience, then decline for workers
with high levels of domain experience.

We test our theory in the context of information tech-
nology (IT) workers using an algorithmic tool to resolve
help tickets2—technical problems submitted to the IT
department that require considerable domain experi-
ence to resolve (Mithas and Krishnan 2008). We exploit
a within-subjects experiment in which a sample of cor-
porate IT support workers with varying levels of do-
main experience were assigned tickets to be resolved (1)
manually using their previous ticket resolution system
and (2) by using the new ML-trained algorithmic tool
that lists the most likely solutions to each ticket. This en-
ables us to compare—across varying levels of domain
experience—the proportion of resolved tickets for

workers using the algorithmic tool, relative to manually
resolving tickets.

We find that only workers with moderate levels
of domain experience perform significantly better us-
ing the algorithm than manually resolving tickets—
confirming an inverted U-shape in relative performance
over the range of domain experience. To validate the
mechanisms driving this relationship, we analyze indi-
vidual log files for the subset of tickets resolved using
the algorithm. These analyses reveal that the inverted
U-shaped relationship is driven by a propensity of both
the low experience and the high experience participants
to ignore the algorithm’s correct advice. However, the
mechanisms driving this pattern appear to be different
for high experience versus low experience participants.
As theorized, additional analyses and qualitative inter-
views suggest that low experience participants reject
algorithmic advice primarily due to lack of ability to
assess and use algorithmic recommendations, whereas
high experience workers reject algorithmic advice pri-
marily due to an aversion to the algorithm’s advice. In-
terviews with participants suggest that the aversion of
high experience workers was rooted in their belief in
their own superior understanding of the complex IT
systems, and in a greater sense of accountability for
their actions.

Our study contributes to the human capital and
technological change literature, and research on algo-
rithm aversion. Our first contribution extends our un-
derstanding of the complementarity of human capital
and algorithmic tools. Prior research emphasizes the
benefits of human domain experience for algorithm-
augmented work (Autor 2015, Brynjolfsson and Mitch-
ell 2017, Shrestha et al. 2019, Choudhury et al. 2020b,
Raisch and Krakowski 2020), but our theory and re-
sults indicate that higher domain experience also has
potential downsides. Integrating insights from the al-
gorithm aversion literature, our framework generates
a prediction that for experienced workers, marginal in-
creases in domain experience may decrease comple-
mentarity with algorithms. Our second contribution
deepens our understanding of the implications of algo-
rithm aversion by experts. Whereas prior literature on
algorithm aversion implies that expertise is a liability
for algorithm-augmented judgments (Arkes et al. 1986,
Logg et al. 2019), we counter that domain experience
is, in fact, the primary means by which humans have
any potential to complement algorithmic judgment.
Thus, whether an expert will do better or worse with
an algorithm is not merely how much domain experi-
ence they have, but rather whether (in their context)
the aversion effect overpowers the ability effect. Taken
together, our theory integrates mechanisms from pre-
viously distinct theories to explain why intermediate
levels of domain experience can provide the greatest
algorithm-augmented performance.
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Theory
Domain Experience and Ability to Assess and
Use Algorithmic Advice
The human capital and technology change literature
highlights that (at least in the near future) algorithms
cannot entirely replace humans for most tasks, and
that humans are a necessary complement to algo-
rithms. This is because many tasks performed by
knowledge workers require tacit knowledge not easily
codified into rules (Polanyi 1966, Dreyfus and Dreyfus
1984, Autor 2015, Brynjolfsson and Mitchell 2017), re-
quire interpretability (Shrestha et al. 2019), or require
some human value judgment in addition to prediction
(Agrawal et al. 2018, 2019). Even ML-built algorithms,
which may be able to learn some tacit rules through
inductive learning (Choudhury et al. 2020a), cannot
replace humans for anything but well-structured
and narrow tasks (Autor 2015). And even for well-
structured and narrow tasks, ML-built algorithms are
typically trained from large, noisy data sets that con-
tain random errors or overfitting, lack any semblance
of causal reasoning (Pearl 2009, Pearl and Mackenzie
2018), and lack contextual information. Therefore, hu-
man evaluation and intervention are often required
when using algorithmic tools in practice (Lebovitz
et al. 2020, Raisch and Krakowski 2020).

The cognitive psychology literature suggests that hu-
mans’ relative advantages over algorithms—such as tac-
it knowledge, causal and contextual understanding—
increase with domain experience (Dane et al. 2012). This
is because domain experience—domain-specific knowl-
edge obtained by focused practice or learning by
doing—is a foundational driver of human knowledge
and domain expertise (Chari and Hopenhayn 1991,
Ericsson et al. 1993). Domain experience allows people
to build context-dependent perceptual structures that
help them frame problems, detect relevant signals,
and react intuitively and appropriately when making
complex evaluations (Chase and Simon 1973, Simon
1991, Salas et al. 2010). This allows a fuller grasp of con-
text, which “makes focused perception possible, under-
standable, and productive” (Dasgupta and David 1994,
p. 493). For example, more experienced radiologists are
able to detect subtle cues in x-ray images that less experi-
enced radiologists cannot perceive (Lesgold et al. 1988).

Accordingly, domain experience is foundational to
humans’ ability to complement algorithmic tools,
because it allows humans to better perceive when al-
gorithms make mistakes due to lack of context, adapt-
ability, or simple random error. A recent experiment
confirms that domain experience allows humans to
better leverage algorithmic tools (Choudhury et al.
2020b). Experimental subjects, who were novices in
patents and intellectual property, were tasked with
using an algorithmic tool to identify relevant prior
art. Only participants with access to expert patent

examiners’ domain knowledge—which drew on con-
textual knowledge to highlight key information
missed by the algorithm—were able to correctly inter-
pret and leverage the useful advice generated by the
ML-based algorithmic tool to identify prior art. These
human advantages over algorithms are a major reason
that humans are kept in the loop for many algorithm-
augmented decisions, such as human resources (HR)
departments using algorithms to decide whom to hire
(Raisch and Krakowski 2020).

Humans with more domain experience are even
able to complement highly accurate algorithms, which
are only highly accurate on average. Consider an ex-
ample: the Google Translate algorithm translating a
sentence from one language to another. This algo-
rithm does very well on average, but it is not uncom-
mon for native speakers (i.e., those with years of
domain experience in the language and culture) to im-
prove the translations by intuitively perceiving when
word choice feels off, syntax violates subtle linguistic
rules, or when the output is completely unfathomable
(see Autor 2015).

Domain Experience and Aversion to
Algorithmic Advice
Although workers with more domain experience may
be more likely to catch an algorithm’s mistakes, they
may also be more averse to accepting its advice. The
term “algorithmic aversion” was coined by Dietvorst
et al. (2015), but the literature on noncompliance with
algorithmic advice dates back to as early as Meehl
(1954), and it has been confirmed across many contexts
(Grove and Meehl 1996, Grove et al. 2000, Sanders and
Manrodt 2003, Fildes and Goodwin 2007, Vrieze and
Grove 2009, Christin 2017, Dietvorst et al. 2018, Glaeser
et al. 2021, Yang, 2021).

Algorithm aversion is especially salient among
experts—workers with high levels of domain experi-
ence. One early study on the topic found that ex-
perts3 tended to use helpful decision rules less than
those with less experience and, consequently, exhib-
ited worse judgment (Arkes et al. 1986). More recent-
ly, Logg et al. (2019) confirmed these results in study
4 of their paper (“decision maker expertise”). They
report that whereas laypeople placed more weight
on algorithmic than human advice, experts4 heavily
discounted all advice sources; they preferred their
own judgment over advice from an algorithm or
from another human advisor. As a result, their fore-
casting performance suffered. Discussing these re-
sults, Logg et al. (2019) attribute algorithmic aver-
sion to mechanisms that explain experts’ greater
tendency to reject advice from both humans and
algorithms—egocentrism (Soll and Mannes 2011)
and individuals’ overconfidence in their own judg-
ment (Gino and Moore 2007, Logg et al. 2018). In
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their third experiment (i.e., “role of the self”), Logg
et al. (2019) compare algorithmic advice to both ad-
vice from other human participants and to the self-
judgment of participants, reporting that individuals
were more confident in their own estimates than
those of fellow participants, but least confident in
the algorithm.

Prior literature on expert advice taking in general
(not necessarily advice from algorithms) suggests
that this mistrust of advice may result from experts’
biased assimilation of information (Liu 2017).5 In the
context of the U.S. National Institutes of Health, Li
(2017) showed that expert evaluators6 were, ironical-
ly, both better informed and more biased about the
quality of projects in their own areas. Experts’ ego-
centric discounting of others’ opinions has been
attributed to differential information, namely the no-
tion that experts have privileged access to their in-
ternal reasons for holding their own opinions, but
not to the advisors’ internal reasons (Yaniv and
Kleinberger 2000). Teplitskiy et al. (2019) confirm a
related idea by showing that experts7 are less likely
to accept advice, arguing that experts, unlike novi-
ces, are likely to have very fine-grained maps of
intellectual space and may discount out-group infor-
mation. In the end, although those with more experi-
ence tend to make more accurate evaluations, this
can be offset by the tendency to overestimate the
confidence interval of their predictions (McKenzie
et al. 2008).

Several studies also offer explanations for why ex-
perts’ general aversion to advice can be especially
salient when advice is generated by algorithms. For
example, Yeomans et al. (2019) find that although al-
gorithmic systems outperform humans in making
recommendations, people often choose not to rely
on these recommender systems. This aversion partly
stems from the fact that people believe the human
recommendation process is easier to understand.
People are generally averse to accepting recommen-
dations from systems they cannot understand or
cannot control (Herlocker et al. 2004). This has been
observed in the resistance of clinical experts to diag-
nostic algorithmic decision rules, despite the superi-
or performance of those rules (Grove and Meehl
1996). Experts with vast arrays of domain knowl-
edge can mistakenly feel that they have access to
important information unaccounted for by the algo-
rithm, resulting in mistrust of the algorithmic
output.

In summary, this body of work strongly suggests
that aversion to algorithmic advice is more prevalent
among people with more domain experience. This is
partly explained by experts’ aversion to advice in gen-
eral, but can be especially salient for advice generated
by algorithms.8

Hypothesis
Whereas the literature on human capital and technolo-
gy change would predict that domain experience in-
creases a worker’s ability to complement algorithms,
the algorithm aversion literature shows that workers
with more domain experience are apt to reject helpful
algorithmic advice due to aversion. On the surface,
these perspectives appear to yield contradictory re-
sults. However, our framework reconciles these per-
spectives by arguing that both of these countervailing
forces—ability and aversion—influence workers, but
at varying degrees of strength for different levels of
domain experience.

First, consider how increasing domain experience af-
fects workers’ ability to complement algorithms. Some
of the earliest work on the theory of human capital pos-
ited that knowledge and skills increase at a decreasing
rate (Becker 1962), and later work on learning by doing
has consistently documented diminishing returns to ex-
perience (Ericsson et al. 1993, Foster and Rosenzweig
1995, Mithas and Krishnan 2008). We should expect,
then, that although workers with more domain experi-
ence do have more ability to accurately assess algorith-
mic advice, this relationship will have diminishing
returns. The marginal increase in ability will be greater
for workers with lower levels of experience.

By contrast, aversion to algorithmic advice is likely
stronger for thosewithmore domain experience (Arkes
et al. 1986, Yaniv and Kleinberger 2000, Liu 2013, Li
2017, Logg et al. 2019, Teplitskiy et al. 2019). Taken
together, we theorize that algorithm-augmented per-
formance will first rise with increasing domain experi-
ence (when the marginal positive impact of ability on
performance outweighs the marginal negative impact
of aversion on performance), then fall (when the mar-
ginal negative impact of aversion on performance
catches up to the marginal positive impact of ability on
performance). For people with low domain experience,
the impact of ability on overall performance increases
rapidly, whereas the influence of aversion remains rel-
atively low. Thus, increasing domain experience for
novices will be associated with increased performance
using algorithms. By contrast, for people with high do-
main experience, the impact of ability on performance
has leveled off, whereas the impact of aversion has in-
creased. Thus, increasing domain experience will be
associated with decreased algorithm-augmented per-
formance for experts. Formally, we hypothesize:

Hypothesis. Relative to self-performance, algorithm-aug-
mented performance has an inverted U-shaped relationship
with domain experience—marginally increasing for low ex-
perience workers and marginally decreasing for high experi-
ence workers.

Figure 1 illustrates the proposed framework. It
highlights that we expect workers to have the best
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algorithm-augmented performance when the positive
contribution of ability to performance (the dashed line
on the top panel) has the biggest gap above the nega-
tive contribution of aversion to performance (the solid
line on the top panel). Conceptually, adding together
the performance impact of these lines results in the
overall impact of domain experience on algorithm-
augmented performance (represented by the inverted
U-shaped dotted line on the bottom panel).

Research Context
We test our hypothesis in the context of workers
resolving help tickets in a corporate information
technology (IT) department. This is an appropriate
setting to test our hypothesis for several reasons.
First, resolving tickets cannot yet be fully automated
by algorithms. Humans must interface with algo-
rithms and evaluate their recommendations in a hy-
brid work process (Shrestha et al. 2019). Second, IT
is a sufficiently complex task that it requires signifi-
cant learning by doing over years of experience, and
there are diminishing returns to IT experience (Mi-
thas and Krishnan 2008). Therefore, as in many other
contexts, we expect it to be a setting in which ability
has a positive but diminishing effect on algorithm-
augmented performance.

We partnered with a large Indian technology com-
pany, TECHCO, that was running an in-house ex-
periment to test the performance of its IT staff using
a new algorithmic tool that was designed to aug-
ment ticket resolution. Using a within-subjects de-
sign, IT professionals with varying levels of IT expe-
rience were instructed to solve a set of help tickets
both using the new algorithmic tool and manually.
As we could not randomly assign domain experi-
ence to workers, we test how domain experience
moderated performance (in terms of the number of
tickets resolved) using the algorithm (treatment) ver-
sus resolving the tickets manually using the old sys-
tem (control). In the following sections, we provide
more detailed explanations of IT support work and
the algorithm used by the workers. Then we de-
scribe the within-subjects experimental design and
our empirical approach.

IT Support Work in TECHCO
TECHCO, a technology company with more than
100,000 employees, houses a large internal IT depart-
ment of roughly 500 support staff members who over-
see the maintenance of networked computer systems
within the organization. As in many large organiza-
tions, users (non-IT employees) alert TECHCO IT of
technical issues by submitting help tickets. A user fills
out a form to provide details about the issue, then
submits the ticket for IT to resolve. IT staff spend
roughly 25% of their day working through a queue of
tickets that request help on issues such as resetting
passwords, granting administrative access to network
users, and fixing security problems.

At TECHCO, IT staff are divided into three ascend-
ing levels, which approximately corresponds to
IT-related work experience: level 1 (0–6 years of expe-
rience in our sample), level 2 (3–10 years of experience
in our sample), and level 3 (7–15 years of experience
in our sample). In general, tickets that tend to be more
difficult or require higher permissions are sent to
higher-level staff. In addition to experience levels, IT
staff are assigned to an operating system (OS) track:
Wintel (a combination of the words “Windows” and
“Intel”), Linux, or a hybrid of both.9

Like many other IT departments, TECHCO IT staff
have access to a large internal database of more than
7,000 runbooks—sets of instructions to solve specific re-
curring problems. The runbooks guide IT staff
through complicated problems they may infrequently
encounter. With the correct runbook as a guide, it is
possible to follow the step-by-step instructions to re-
solve about 90% of the tickets within TECHCO. How-
ever, it is often not obvious from the description in the
ticket which among thousands of runbooks to use.
According to the IT staff, it is not uncommon to spend
30 minutes to find the right runbook. Once the correct

Figure 1. (Color online) Theoretical Framework
Visualization
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runbook is identified, workers follow the steps laid
out in the runbook to resolve the ticket. Even for rela-
tively simple issues, ticket resolution using the legacy
manual system involves multiple windows and
clicks—for example, logging into a server, identifying
a user in a directory, and granting permissions the
user (for an illustrative example of resolving a ticket
manually, see online appendix Figure A1).

AutomateIT: TECHCO’s Algorithm for
Augmenting IT Support Work
TECHCO assigned a team of machine learning (ML)
engineers to build AutomateIT10—the tool designed
to augment IT ticket resolution. The tool automates
two core steps of the IT ticket resolution process: run-
book search and runbook execution. The tool uses nat-
ural language processing (NLP) to standardize, token-
ize, and topic extract text from more than one million
help tickets and the corresponding 7,000 runbook sol-
utions. A model was trained using term frequency-
inverse document frequency (TF-IDF) token scores
and directional n-grams to relate the text data in the
tickets to the correct runbook label. The trained model
takes the text of a help ticket as input, which it uses to
calculate a similarity score to each of the 7,000 possible
runbooks.

All runbooks above a certain similarity score thresh-
old (e.g., 60%) are displayed as output to the human
user, who then selects one of the runbooks to execute.
Before executing the runbook, the user inspects the
default parameter values of the automated runbook
(e.g., the server address) to see if the parameter inputs
will correctly resolve the ticket. If not, they can adjust
the parameter values (e.g., change a server address) to
correctly resolve the ticket. Since it is difficult for the
algorithm to fill in the correct parameter values for
each runbook based on the limited and unstructured
information in the ticket, humans play a valuable role
in checking and modifying the parameters of the run-
books before they execute. For an illustrative example
of AutomateIT ticket resolution, see online appendix
Figure A2.

Experimental Design
The experiment was executed by a team at TECHCO
tasked with evaluating the effectiveness of the new
AutomateIT tool. Although the authors of this paper
had input on the experimental design, TECHCO ulti-
mately finalized and executed it. Given practical limi-
tations at the company, the intervention was not a
perfectly designed experiment. Throughout the paper,
we highlight issues with the research design and how
we address each issue.

Since it was not possible to randomly assign do-
main experience, we treat domain experience as a

moderating effect on performance for tickets resolved
using self-judgment (control) versus algorithm aug-
mentation (treatment). We opted to implement a
within-subjects design. In a within-subjects design,
each participant is subjected to both the treatment and
the control conditions, which yields a causal estimate
if the treatment and control exposures can be consid-
ered independent (Charness et al. 2012). This design
has several strengths relative to between-subjects de-
signs. For instance, internal validity does not depend
on random assignment because individuals serve as
their own control. By reducing error, this offers a
boost in statistical power when testing a moderating
effect using a small number of subjects (Judd et al.
2001).

There were 154 TECHCO IT support staff members
who volunteered to participate in the experiment. Par-
ticipants were told the purpose of the experiment was
to test a new algorithmic tool that would assist them
in their work, and were strongly encouraged to partic-
ipate in the experiment by their managers. In field in-
terviews, participants expressed that they did not feel
that their jobs were threatened by the tool, but rather
viewed the tool as a welcome automation of menial
tasks so they could focus on other aspects of their job.
Given this consensus, and the fact that these tasks rep-
resented only a small portion (about 25%) of the par-
ticipants’ overall job, we have no reason to think that
participants were incentivized to intentionally under-
perform when using the algorithm.

Each participant was given one hour of training on
how to use the new AutomateIT tool prior to the ex-
periment. In the session, trainers explained that the
purpose of the tool was to assist them in the day-to-
day activity of resolving tickets. Participants were not
told exactly how accurate the tool would be (about
90% of top recommendations were correct). After the
training, each participant was assigned to one of five
experiment sessions, which took place over the course
of a week. Among those who volunteered and re-
ceived training, all but one participated (the individu-
al called in sick). In each session, about 30 participants
were given four hours in a proctored conference room
to resolve the assigned tickets on their normal work
laptop. The four-hour time limit was determined
based on the normal production time it would take to
resolve eight tickets to avoid significant time pressure.
The tickets assigned in each session were different to
ensure that no specific answers would leak from one
session to another. Proctors ensured that there was no
communication between subjects and that no one
looked at others’ laptop screens.

Each participant was assigned tickets to resolve us-
ing both the manual ticket resolution system and the
new AutomateIT tool. In accordance with a within-
subjects experimental design, each participant
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received four (control) manual self-performance tick-
ets to resolve using the old system, and the same four
(treatment) tickets to be resolved using the new Auto-
mateIT system. Therefore, each participant was as-
signed only four unique tickets among the eight total
assigned tickets.11 This feature of the within-subjects
experiment allows us to directly compare AutomateIT
tickets to manual tickets while completely controlling
for differences between individual participants and
differences between tickets. The recurring tickets were
identical except for small changes in the problem de-
scription, which varied the parameters necessary for
ticket resolution (e.g., user ID and IP address).

Using a within-subjects experimental design re-
quires that treatment and control conditions are
independent—yet in our experimental design, it is
possible that a recurring ticket could be easier to re-
solve due to repeated exposure learning effects. We
took several steps to verify independence of treat-
ment and control. First, we randomly assigned
whether manual tickets or algorithmic tickets were
assigned first for each participant. Second, we con-
trol for recurring tickets in our models and verify
that there is not a positive and significant learning
effect. Third, we confirm that running between-
subjects analysis on the subsample of only nonrecur-
ring tickets (i.e., tickets appearing for the first time)
yields the same results (discussed later in the results;
Table 3 and online appendix Table A3).

Field interviews with participants reveal why re-
peated exposure learning effects from receiving the
same ticket twice did not confound the results. Ac-
cording to the participants and proctors, the algo-
rithm’s recommendation and solution emerged as if
from a black box. Because the AutomateIT tool did
not display the steps that it followed to resolve a tick-
et, it did not reveal how to resolve a ticket manually
when it executed a solution. This meant that getting
the same ticket in manual resolution mode was not
any easier after resolving it with the AutomateIT tool.
Meanwhile, resolving a ticket manually did not help
later performance with the AutomateIT tool because
the steps they took to manually resolve the ticket did
not obviously point to which AutomateIT runbook la-
bel would execute the correct command.

The TECHCO proctors who ran the experiment
created the tickets that were assigned to participants.
The proctors checked to make sure that each as-
signed ticket contained the correct runbook as one of
the possible runbook solutions listed by the algo-
rithm (this was not communicated to the partici-
pants). These proctors were familiar with the routine
work of the IT support staff and created tickets for
the experiment that were based on real tickets seen
in the past. In order to simulate normal working con-
ditions (and to ensure the results were relevant for

the actual daily work of the IT staff), a different set
of tickets was created for each employee level—a
pool of 40 level 1 tickets, 40 level 2 tickets, and 40
level 3 tickets. For the experiment, tickets from each
of the three pools of tickets were randomly assigned
to each participant based on their employee experi-
ence level (level 1, 2, or 3).

Since participants were assigned tickets within their
employee level, there is a potential selection issue when
estimating the moderating effect of domain experience.
Differences in performance across employees with
varying levels of domain experience could be due to
the fact that different problems were assigned to em-
ployee levels 1, 2, and 3—which correlates with years
of domain experience. Here, we highlight three specific
ways we address this issue. First, it is important to
keep in mind that we are using a within-subjects design
and that our models include participant and ticket-
level fixed effects. Therefore, the relevant comparison
is the difference between algorithm-augmented and
manual ticket resolution performance within each par-
ticipant, compared across participants with varying lev-
els of experience. As each ticket is assigned in both au-
tomatic and manual resolution mode, if differences in
the tickets assigned to each employee level are driving
the results, it must be because the tickets somehow sys-
tematically affect participants’ treatment of identical
sets of manual versus automatic tickets differently.
Therefore, we do not need to assume that different tick-
ets do not have varying effects on performance across
the range of experience. We only need a weaker as-
sumption: that the difference between manual and au-
tomatic tickets does not systematically vary over the
range of experience.

Second, we confirmed that the experimental tickets
used for each employee level (1, 2, and 3) were not
significantly different in the rate of correct predic-
tions by the algorithmic tool (algorithmic recommen-
dations on each set of tickets were around 90% cor-
rect). This suggests that, as designed by the proctors,
the tickets were similar enough that the algorithm
could provide the same accuracy to all participants
regardless of their employee level and, therefore,
would not be a meaningful confound (see online ap-
pendix Figure A3).

Third, we ran a subsample analysis using only level
2 employees, thereby eliminating any potential con-
founding issues between employee levels. We present
this analysis in the robustness checks of the results
section. The analysis confirms that there was a statisti-
cally significant inverted U-shape across the range of
experience that was not driven by the ticket assign-
ment to the different employee levels.

A final, related issue was that in the experimental
setup, some employees did not receive four recurring
tickets (some received three tickets that recurred and
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two that did not). To address this, we also ran our
models without the participants who did not receive
recurring tickets (online appendix Table A1, column 1),
and the results remained unchanged. We also ran a sub-
sample analysis using only level 2 employees, which
yielded results consistent with our main findings (see
online appendix Table A1, column 2).

Data
In this section, we describe the measures used through-
out our analysis. Table 1 presents summary statistics for
each of the variables we use and displays a balance test
between AutomateIT (treatment) and manual (control)
tickets.

Dependent Variable
The primary measure of performance is Ticket Resolvedik,
a binary variable that is set to 1 if ticket k was resolved
by participant i, and 0 if it was not resolved. This is the
standard measure of performance for IT support work at
TECHCO.

Independent and Moderator Variables
To operationalize the comparison of algorithm-
augmented to self-performance, we compare tickets
resolved using the algorithmic AutomateIT system
(treatment) versus the manual system (control). This
comparison is captured for each ticket k by the binary
variable Is AutomateIT Ticketk (1 for AutomateIT tool,
0 for the manual system).

Our moderator variable of interest, domain experi-
ence, is measured by the total years of IT experience for
participant i (Years of IT Experiencei).12Since the partici-
pants in our sample were relatively homogeneous and
had similar work experience, years of IT experience is
our best proxy for domain experience because it is a
measure of their exposure to solving domain-relevant
problems (Ericsson et al. 1993). Mithas and Krishnan
(2008) validate this operationalization of domain expe-
rience by demonstrating that IT competencies are ac-
quired through learning by doing, and thus that
“technical competencies of IT professionals are reflected
in their on-the-job IT experience” (Mithas and Krishnan
2008, p. 417). They also point out that although firm-
specific IT experience (i.e., familiarity with the IT sys-
tems of the firm) is valuable, overall IT experience (i.e.,
IT experience in other companies) is also valuable given
the standardization of hardware, software (e.g., use of
enterprise resource planning systems and application
service providers), and methodologies (e.g., capability
maturity models, ISO) across firms.

Controls
To separate domain expertise from firm-specific human
capital, we also control for each participant’s years of

experience at the company (Years at Companyi). To mea-
sure whether the ticket matches the employee’s OS
track experience, the binary variable Ticket Matches OS
Trackik is set to 1 if the ticket is for a problem that
matches the technology track of the employee (e.g., the
employee is on the Wintel track and the ticket is a Win-
dows/Intel-related problem). We also mark whether
each employee’s OS track is Wintel, Linux, or a hybrid
Linux/Wintel track. Lastly, we control for the
Ticket Orderik in which each ticket was opened (from
first through eighth) and for whether each ticket was
a Recurring Ticketik (1 if the participant had already
seen the same ticket using the other resolution system;
otherwise 0).13

Statistical Estimation
We obtain ordinary least squares (OLS)14 estimates
using the following model:

Yik � β1Is AutomateIT Ticketk + β2Years of IT Experiencei
+ β3Years of IT Experience2i + β4Is AutomateIT Ticketk
∗Years of IT Experiencei ∗ +β5Is AutomateIT Ticketk ∗
Years of IT Experience2i + γX + δIs AutomateIT Ticketk
∗X +α+ εik,

where i indexes individual-level attributes, k indexes
ticket-level attributes, and Yik captures whether the
ticket was resolved by a participant. The effect of inter-
est is captured by the terms β4 and β5, the quadratic fit
of the influence of years of experience on solving Auto-
mateIT tickets (relative to manual tickets). The X repre-
sents a vector of controls: years at the company, wheth-
er the ticket matches the user’s OS track, the user’s
OS track, the ticket order, and whether it is a recurr-
ing ticket. The controls also include interactions be-
tween Ticket Orderik and Recurring Ticketik with Years
of IT Experiencei + Years of IT Experience2i .

15 All controls
are included twice in the model—once alone and once
interacted with Is AutomateIT Ticketk. Interacting Is
AutomateIT Ticketk with each variable allows the equa-
tion to estimate different effects for tickets that were re-
solved manually versus using the AutomateIT system.
Lastly, α represents a vector of fixed effects, for the em-
ployee level (1, 2, or 3) and experimental session (of five
possible sessions), participant-level fixed effects, or
ticket-level fixed effects.

Results
Figure 2 compares the raw percentage of tickets re-
solved in the manual and AutomateIT resolution
modes across the range of IT experience. Although
the overall percentage of resolved tickets was statis-
tically indistinguishable for tickets resolved using
manual and AutomateIT (see Table 1), there was
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considerable heterogeneity across the range of expe-
rience. For tickets resolved using AutomateIT, there
was an inverted U-shaped relationship between the
years of IT experience and the percentage of tickets
resolved. The same relationship did not exist for
tickets resolved manually. Comparing the differ-
ences between the two, moderately experienced
workers perform significantly better when using the
algorithm versus manually resolving tickets. High
and low experience workers perform about the same
when using the algorithm versus manually.

In columns 1–3 of Table 2, we formally test differ-
ences in performance resolving tickets using AutomateIT
versus manually, across the range of experience. Regres-
sion results confirm that the relationships displayed in

Figure 2 hold after adding relevant controls and fixed ef-
fects. The model displayed in column 1 confirms that
participants with more years of IT experience were more
likely to accurately resolve AutomateIT tickets relative
to manual tickets, but the effect disappears for higher ex-
perienced workers. Column 2 confirms that the relation-
ship is robust to problem fixed effects, ruling out alterna-
tive explanations due to unobserved problem
heterogeneity (though the relevant squared term is only
marginally significant, presumably due to the many
fixed effect dummy variables included in the model).
Column 3 adds participant fixed effects, which explicitly
models a quadratic relationship between Ticket Resolvedik
and Years of IT Experiencei for AutomateIT tickets rela-
tive to manual tickets within each participant. This

Table 1. Summary Statistics

Variables AutomateIT Manual t-statistic p-value

Dependent variable

Ticket Resolved 0.703 0.68 0.866 0.387
(0.457) (0.467)

Moderator variable

Years of IT Experience 6.026 6.026 0 1
(3.9) (3.9)

Control variables

Years at Company 2.248 2.248 0 1
(2.154) (2.154)

OS Track: Linux 0.353 0.353 0 1
(0.478) (0.478)

OS Track: Wintel 0.484 0.484 0 1
(0.5) (0.5)

OS Track: Hybrid Linux/Wintel 0.163 0.163 0 1
(0.37) (0.37)

Ticket Matches OS Track 0.6 0.603 −0.117 0.907
(0.49) (0.49)

Ticket Order 4.338 4.662 −2.474 0.013
(2.171) (2.399)

Recurring Ticket 0.428 0.467 −1.379 0.168
(0.495) (0.499)

Level 1 Employee 0.392 0.392 0 1
(0.489) (0.489)

Level 2 Employee 0.281 0.281 0 1
(0.45) (0.45)

Level 3 Employee 0.327 0.327 0 1
(0.469) (0.469)

AutomateIT-specific variables

Correct Runbook Recommendation by Algorithm 0.902
(0.298)

Correct Runbook Selection by Participant 0.796
(0.403)

Error of Omission (Acceptance of Incorrect Algorithmic Recommendation) 0.062
(0.242)

Error of Commission (Rejection of Correct Algorithmic Recommendation) 0.142
(0.349)

Correcting False Positive (Rejection of Incorrect Algorithmic Recommendation) 0.036
(0.186)

Notes. Means displayed with standard deviations in parentheses. P-values are displayed for a standard t-test of the difference in means between
values of variables for the sample of AutomateIT versus manual tickets.
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column shows that, accounting for differences between
individuals, there is an inverted U-shaped difference in
performance between AutomateIT tickets and manual
tickets, across the range of domain experience.

To facilitate interpretation of the estimates, Figure 3
displays the predictions of ticket resolution condition-
al on experience, as predicted by the regression model
in Table 2, column 3. Panel (a) displays the predicted
percentage of tickets resolved for both manual and
AutomateIT. Panel (b) displays the relevant compari-
son as the difference between predicted percentage of
tickets resolved for AutomateIT (relative to manual).
The figure provides a visual confirmation of the hy-
pothesized inverted U-shape of algorithm-augmented
performance (relative to self-performance) over do-
main experience.

Robustness Checks
Subsample Analysis: Buckets of Domain Experience.
We conducted several additional analyses to check the
robustness of the main findings. First, we ran subsam-
ple analyses to confirm that our results were not driv-
en by unjustified functional form assumptions or re-
peated exposure learning effects. In columns 1–4 of
Table 3, we break up the sample into four roughly
equal-sized subsamples across the range of domain ex-
perience (0–3 years, 4–6 years, 7–9 years, 10+ years),
comparing performance with versus without the Auto-
mateIT tool. These analyses confirm the main finding:

only moderately experienced workers did significantly
better with the algorithmic tool. High experience
workers did about the same with the algorithmic tool,
and the lowest experience workers did worse (we ex-
plore why in the “Qualitative Interviews with Partic-
ipants” section). In columns 5–8, we conduct a similar
analysis comparing between subjects, using only tick-
ets appearing for the first time (i.e., no recurring tickets
were included). This analysis confirms that results
were not driven by repeated exposure learning effects.

Subsample Analysis: Buckets of AutomateIT and Man-
ual Tickets. Second, we conducted a similar analysis
on separate subsamples of manual and AutomateIT
tickets. For each subsample, we estimated how perfor-
mance varied across four buckets of experience (again
0–3 years, 4–6 years, 7–9 years, and 10+ years). The re-
sults, displayed in online appendix Table A3, indicate
a constant upward (though not statistically signifi-
cant) trend for manual tickets over the range of do-
main experience, and a marginally significant bump
in relative algorithm-augmented performance only for
moderately experienced workers.

Subsample Analysis: Level 2 Employees. Third, we
briefly return to the potential identification issue of as-
signing a different set of questions to each employee
level. To address this issue, we ran a subsample analy-
sis using only level 2 employees. Though this narrows

Figure 2. Raw Percentage of Tickets Resolved Across Range of IT Experience for Manual and AutomateIT Tickets
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the AutomateIT tool.
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the data to a much smaller sample size, analyses using
only these employees eliminates potential confound-
ing issues between employee levels. We chose to ex-
amine level 2 employees because they contain the
largest sample of employees in the range of

experience where the change in direction of the in-
verted U-shape takes place. The analysis provides
another confirmation that there was a statistically sig-
nificant inverted U-shape in relative performance
across the range of experience, which was not driven

Figure 3. (Color online) Predicted Effects for Ticket Resolutions Across IT Experience
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Notes. Panel (a) displays predicted percentage of tickets resolved for AutomateIT and manual tickets, conditional on Years of IT Experience. Panel
(b) displays the predicted difference in percentage of tickets resolved for AutomateIT versus manual tickets. Predicted values were obtained us-
ing the model in Table 2, column 3.

Table 2. OLS Regressions

Dependent variable: Ticket Resolved

Coefficients (1) (2) (3)

Is AutomateIT Ticket * Years of IT Experience 0.080 0.067 0.085
(0.029)** (0.027)* (0.029)**

Is AutomateIT Ticket * Years of IT Experience2 −0.005 −0.004 −0.006
(0.002)* (0.002)+ (0.002)*

Is AutomateIT Ticket −0.163 −0.121 −0.043
(0.104) (0.088) (0.111)

Is AutomateIT Ticket * Controls Yes Yes Yes
Years of IT Experience 0.004 −0.040

(0.043) (0.043)
Years of IT Experience2 0.002 0.004

(0.003) (0.003)
Controls Yes Yes Yes
Employee experience level fixed effects Yes
Experiment session fixed effects Yes
Problem fixed effects Yes
Participant fixed effects Yes
Adjusted R2 0.086 0.141 0.221
Number of observations 1,224 1,224 1,224

Notes. Each column includes controls for all the control variables listed in Table 1, plus Ticket Order and Recurring Ticket interacted with the Years
of IT Experience + Years of IT Experience2. All regressions use cluster-robust (CR2). standard errors clustered at the participant level (Pustejovsky
and Tipton 2018).

+p<0.1; *p < 0.05; **p < 0.01.
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by the ticket assignment to the different employee lev-
els. Results from the regression model are included in
online appendix Table A1, column 2. For visualization
of the predicted effects of the regression model, see
online appendix Figure A4.

Tests of Inverted U Functional Form. Finally, we en-
sure that our estimation is not a spurious result of
estimating an OLS model with a forced quadratic
functional form. First, we apply Simonsohn’s (2018)
two-lines test. This test estimates two regression
lines—one for low and one for high values of x—
without imposing a quadratic functional form as-
sumption. This test confirms a sign change in proba-
bility of resolving an AutomateIT ticket (relative to a
manual ticket) for low versus high levels of experi-
ence (see online appendix Figure A5). Second, we
confirmed the functional form using random forest
models. Since machine learning algorithms such as
the random forest can flexibly fit a model while bal-
ancing bias and variance, it can serve as a check that
the models we tested in Table 2 are a good fit of the
data, and not simply being forced on the data by the
researcher (for methodology, rationale, and cautions
for implementing this approach see Choudhury et al.
2020a). For example, it is possible that there were
hidden nonlinear relationships or interactions be-
tween variables that we ignorantly did not include
in our model. The random forest algorithm indepen-
dently found the same inverted U-shaped relation-
ship, further validating that we fit a reasonable mod-
el to the data (see partial dependence plots in online
appendix Figure A6).

Mechanisms
Next, we confirm that our proposed mechanisms—
ability and aversion—drive performance algorithm-
augmented performance differences across workers
with varying levels of domain experience. Although
the study’s primary comparison is within-participant
performance with versus without the algorithm, these
mechanism analyses make comparisons between par-
ticipants for the subset of tickets that were resolved
using the algorithm. Therefore, these analyses no
longer rely on the study’s within-participant randomi-
zation, and are best viewed as exploratory analyses
rather than experimental evidence (though it gives us
confidence that the main results hold with between-
subjects comparisons; see Table 3 and online appendix
Table A3).

In this subset of tickets that were resolved using
AutomateIT, we observe three intermediate outcomes
in addition to the final outcome of ticket resolution.
First, we observe whether the algorithm’s top recom-
mendation was correct. Second, we observe whether a
ticket was attempted by a participant. Before opening
an AutomateIT ticket, participants can view the list of
tickets they are assigned, which includes a preview of
the description of the problem (see online appendix
Figure A2 for visualization). After they select a specif-
ic ticket, they can observe more details about the tick-
et, including the list of likely runbook solutions. At
this point, they select a runbook—or if they do not
think any of the options are correct, they may release
the ticket to be resolved manually later, resulting in
an unresolved ticket. Third, we observe if the partici-
pant selected the correct runbook. However, it is pos-
sible to select the correct runbook but still fail to

Table 3. OLS Regressions on Domain Experience Subsamples

All tickets
First appearance tickets
(no recurring tickets)

Dependent variable: Ticket
Resolved

(1)
≤3 years

(2)
>3 years,
≤6 years

(3)
>6 years,
≤9 years

(4)
>9 years

(5)
≤3 years

(6)
>3 years,
≤6 years

(7)
>6 years,
≤9 years

(8)
>9 years

Is AutomateIT Ticket −0.212 0.162 0.198 −0.051 −0.294 −0.006 0.211 0.048
(0.047)*** (0.050)** (0.054)*** (0.051) (0.055)*** (0.094) (0.084)* (0.068)

Controls Yes Yes Yes Yes Yes Yes Yes Yes
Employee experience level

fixed effects
Yes Yes Yes Yes

Experiment session fixed
effects

Yes Yes Yes Yes

Participant fixed effects Yes Yes Yes Yes
First appearance tickets

subsample
Yes Yes Yes Yes

Adjusted R2 0.318 0.180 0.228 0.148 0.173 −0.021 0.076 0.034
Number of observations 360 352 208 304 186 182 123 185

Notes. Each column includes controls for all the control variables listed in Table 1 (columns 5–8 do not include Recurring Ticket because they use
the subsample of first appearance tickets). All regressions use CR2 standard errors clustered at the participant level (Pustejovsky and Tipton
2018).

*p < 0.05; **p < 0.01; ***p < 0.001.
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resolve the ticket. If the parameters of the runbook are
incorrect and not corrected by the human participant,
the ticket would remain unresolved despite the cor-
rect runbook selection. So finally, we observe whether
the participant actually resolved the ticket.

To get a sense of the mechanisms driving ticket res-
olution, we first compare percentages of tickets that
successfully reached each intermediate outcome, over
the range of domain experience. Figure 4 displays the
raw percentage of AutomateIT tickets at each step in
the ticket resolution process. First, it shows the per-
centage for which the algorithm gave the correct run-
book as the top recommendation (red/circle/solid
line); second, tickets that were attempted (green/
short-long dash/triangle line); third, the percentage of
tickets for which the human participant selected the
correct runbook (blue/dotted/square line); and final-
ly, the percentage for which the ticket was resolved
(purple/long dash/plus line). This visual confirms
that the rate of the algorithm’s accuracy was similar
for all groups, so this was not a driving factor of the
results (i.e., our results are driven by individuals’ be-
haviors rather than differences in the rate of algorith-
mic accuracy). It also shows that most (79%) of the
errors of commission were due to releasing tickets
(i.e., not selecting any runbook), both for the low and
the high domain experience participants (for compari-
sons of errors of omission and commission, see online
appendix Figure A7).

We propose that there are two potential reasons for
releasing a ticket given a correct algorithmic recom-
mendation: (1) lack of ability to understand the prob-
lem and solution, so that it is difficult to evaluate
whether the algorithmic advice is correct or useful; or

(2) an aversion to the algorithm’s advice. According to
our theory, we expect that the former is driving errors
of commission for the low experience workers and the
latter for the high experience workers.

Evidence Consistent with Proposed Mechanisms:
High Experience Participants Do Not Spend More
Time Before Releasing More Difficult Tickets. Accord-
ing to our framework, high experience workers would
not release tickets because they are too difficult, but
rather because they were more averse to algorithmic
advice. If that were true, we would expect high expe-
rience participants to be more likely to release tickets
independent of their ability to solve the ticket. There-
fore, we would expect them to release tickets relative-
ly quickly, regardless of the ticket’s level of difficulty.
Conversely, we would expect low experience partici-
pants to spend more time puzzling out the problem
before they release it.

Although we do not directly observe how much
time a participant spends on a ticket before releasing
it, we can indirectly test this assumption by observing
the average amount of time it took others of the same
employee level to resolve the ticket. Figure 5 displays
the difference in the average amount of time partici-
pants spent on tickets that were released versus at-
tempted. The figure demonstrates that low experience
participants released tickets that would have required
relatively more time to solve (on average nine minutes
longer for released tickets). This is contrasted with
high experience participants, who released tickets that
would take as long to solve as the tickets they at-
tempted (statistically indistinguishable from zero).
This pattern is consistent with the claim that high

Figure 4. (Color online) Percentages of Correct Algorithmic Predictions, Runbook Attempts, Correct Participant Runbook Selec-
tion, and Ticket Resolution
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experience workers are not releasing tickets because
they are too difficult for them.

Evidence Consistent with Proposed Mechanisms:
Domain Experience Positively Affects Ticket Resolu-
tion for the Subset of Attempted Tickets. According
to our framework, we would expect that if we could
somehow remove algorithm aversion for high expe-
rience participants, more domain experience would
lead to a linear relationship between domain experi-
ence and better performance with the AutomateIT
tool. As a proxy for completely removing aversion,
we consider the subset of tickets that were attempted

(i.e., not released). Our regression models confirm
that more IT experience is positively and linearly
related to a greater predicted probability of resolv-
ing the ticket.16 The predicted marginal effects of
the regression model are displayed in Figure 6. This
evidence is consistent with our claim that when we
remove the aversion effect among high experience
workers, domain experience positively affects per-
formance via the ability mechanism across all experi-
ence levels.

Alternative Explanations. We briefly consider three al-
ternative mechanisms that could explain the patterns

Figure 5. Difference in Time Spent on Released vs. Attempted Tickets for Different Levels of Domain Experience
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take to resolve based on other participants of the same employee level who resolved the same ticket. Thus, the y-axis of this plot is the mean reso-
lution time for tickets that were releasedminus the mean resolution time for tickets that were attempted.

Figure 6. (Color online) Predicted Ticket Resolution for Attempted Tickets
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Notes. The figure displays predicted percentage of tickets resolved for AutomateIT and manual tickets, conditional on Years of IT Experience for
the subsample of tickets that were attempted (i.e., any runbook was selected). The coefficient estimates and model used to produce this figure
are included in online appendix Table A1, column 3.
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we observe. First, it is possible that the low experience
workers had false overconfidence, which is sometimes
found in novices who have just begun to learn a new
skill (Sanchez and Dunning 2018). Considering the
pattern of both high and low experience participants
releasing tickets (displayed in Figure 4), this seems
unlikely. If the story was overconfidence, we would
expect relatively more attempted tickets and fewer
correctly resolved tickets. We also found no evidence
of overconfidence in the qualitative interviews.

Second, it is possible that the inverted U-shape
could arise from an adverse selection effect between
employee levels 1, 2, and 3. Competent employees
could be promoted to the next level despite having
less experience. Therefore if incompetent employees
with more experience outperform competent employ-
ees, it may not be because they have more domain ex-
perience, but rather because they were assigned an
easier set of tickets. However, there are several obser-
vations that make this an unlikely explanation for our
results. First, though there were some exceptions at
the margins, promotion to the next level was over-
whelmingly driven by tenure. Second, this alterna-
tive explanation can explain differences in overall
performance, but it is much harder to explain why
selection would be relevant to differences between
algorithmic and manual performance (which is the
primary focus of our theorizing and empirical mea-
surement). Finally, we observe the same inverted
U-shaped pattern for the subset of only level 2 em-
ployees (see online appendix Table A1, column 2;
and Figure A4). Within this subsample, if less expe-
rienced participants are included because of relative-
ly high competence, then they should perform rela-
tively well. But we observe that they perform worse
than more experienced peers.

Third, it is possible that participants with different
levels of experience learned more quickly to use or trust
the algorithm (a similar to the mechanism for aversion
proposed by Dietvorst et al. 2015). However, a wide
battery of regressions and visualizations of learning
over time showed no significant differences in learning
across the levels of domain experience in our context
(results available upon request). The lack of any learn-
ing effects may be because of the short time period
(four hours) in which the experiment was conducted.

Qualitative Interviews with Participants
We conducted field interviews with participants to ex-
plore why high experience workers exhibited algo-
rithm aversion, and why low experience workers did
worse using the algorithm than resolving tickets man-
ually. Responses generally supported our theorizing,
but also highlighted novel explanations of algorithmic
aversion and noncompliance with algorithmic advice.

Why Low Experience Workers Did Worse Using the Al-
gorithm. Our interviews explored a counterintuitive
finding of our study—that low experience workers ac-
tually did worse using the algorithm than resolving
tickets manually. Low experience employees agreed
that they released tickets because they simply did not
have enough experience to know what to do with the
ticket. One participant with two years of IT experience
said, “It might not be possible for us to [resolve the
ticket] because we were unaware of it.” Another
worker with three years of experience emphasized the
role of (lack of) experience in the ability to leverage
the tool: “It’s just a honed experience. So, the more
you get experience into a particular technology, the
more you are able to work on that.” Because they
thought it would be easier to manually resolve the
ticket correctly the first time, rather than having to go
back to fix it if the algorithm got it wrong, they re-
leased tickets they couldn’t evaluate. This was exacer-
bated by the fact that they didn’t have a precise idea
of the algorithm’s baseline performance compared
with their own baseline performance, making the
quality of the algorithmic advice more difficult to as-
sess, and the outcome of its recommendation more
uncertain. Based on these observations, we propose
that in contexts where the costs of accepting false al-
gorithmic advice are higher, and the baseline quality
of the algorithm more uncertain, less experienced
workers will be more likely to ignore algorithmic ad-
vice. This inability to judge when the algorithm is cor-
rect, and therefore fail to implement it due to the cost
of making an error, is a new explanation for noncom-
pliance with algorithmic advice.

Why High Experience Workers Had Worse Aversion:
Advice Discounting and Accountability. Highly expe-
rienced employees agreed that IT experience helped
them leverage the tool, yet they were unsurprised
when we told them that the high experience employ-
ees were relatively likely to release correct tickets.
Compared with low experience workers, they were
more likely to recognize a runbook and know what to
do with it. However, it was difficult for them to trust
that the AutomateIT tool’s recommendation in the
form of a simple label (e.g., “Start AWS Cluster”) was
actually the correct course of action. One participant
with 13 years of experience said that when using the
algorithm, “Certain information is not always avail-
able to make a decision whether a runbook is okay or
not. So, in these kinds of situations, if information is
not available for us, we would just be executing the
runbook blindly . . . We cannot blindly run the execu-
tor script or runbook.”

They perceived themselves as possessing a deeper
understanding of the intricacies and interconnected-
ness of the back-end systems than lower-level
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employees. One participant emphasized doubt that
the algorithmic tool would resolve the ticket without
messing up interconnected software and systems:
“And when we say experience, it comes from know-
ing the environment. If there is one thing, they are
linked to other things . . . an experienced person has a
very vast understanding and very vast picture of . . .
where he can link multiple things. So those are the
things where he gets a little doubt [that the algorithm
will work].” These highly experienced employees re-
leased tickets not because they did not know what
was going on, but rather because they trusted their
own ability to cleanly resolve the ticket more than the
algorithm.

Yet, this explanation (which aligns with prior work
on algorithm aversion) did not completely account for
high experience workers’ high rate of ticket release.
We also observed that high experienced workers felt a
greater accountability for the result of their actions.
One explained this sentiment: “When a ticket comes, a
detailed ticket description will confuse an [inexperi-
enced employee] who is just trained to go in, match
the situation, click, and execute. But being a senior
person, we have to go in and investigate . . . If we per-
form the runbook and production (e.g., a key server)
goes down, so what will be the impact? An inexperi-
enced employee will never think like that.” Another
participant with 12 years of experience agreed: “We
cannot go blindly before seeing anything and just exe-
cute the runbooks.” These conversations illustrated
the prevailing sense that, unlike inexperienced partici-
pants, more experienced participants had a sense of
accountability. They felt the need to ensure that there
were no unintended consequences of accepting algo-
rithmic advice—the buck stopped with them. This
sense of accountability seemed to be a meaningful
driver of algorithm aversion for the most experienced
workers.

Discussion
We began with the question: Under what conditions
does a knowledge worker’s domain experience increase
algorithm-augmented performance? We combined in-
sights from two distinct literatures to highlight that do-
main experience moderates algorithm-augmented per-
formance via two countervailing mechanisms—ability
and aversion. We argued that domain experience can
increase performance via the ability to assess the quali-
ty of algorithmic advice (e.g., identify inaccurate pre-
dictions), but aversion may decrease performance via
rejecting accurate algorithmic advice. Integrating these
perspectives, we argued that because ability developed
through learning by doing increases at a decreasing
rate and algorithmic aversion is more prevalent among
experts, algorithm-augmented performance (relative to

self-performance) will first rise with domain experi-
ence, then fall—leading to an overall inverted U-shape
in algorithm-augmented performance over the range of
domain experience. We tested this hypothesis using
data from a within-subjects experiment of IT workers
to compare their performance resolving tickets with an
algorithmic tool versus resolving tickets manually. We
confirmed the hypothesis, finding that only moderately
experienced workers performed significantly better
when using the algorithm.

Exploring mechanisms suggested that the inverted
U-shaped relationship is driven by the tendency of both
the low experience and the high experience workers to
reject correct algorithmic advice (i.e., errors of commis-
sion), but for different reasons. Low experience work-
ers’ low performance was driven by lack of ability to
assess algorithmic advice, and high experience workers’
failure to improve performance using algorithms was
driven by their relatively high algorithmic aversion. As
evidence, we documented that low experience workers
were relatively likely to release more difficult (time-
consuming) algorithm-augmented problems, whereas
high experience workers released algorithm-augmented
tickets indiscriminately. We also documented that for
the algorithm-augmented tickets that were attempted,
the relationship between performance and domain ex-
perience was positive across all experience levels. These
observations were consistent with the mechanisms un-
derlying our predictions. Finally, we interviewed partic-
ipants, which abductively shed light on reasonable ex-
planations for why highly experienced workers
exhibited greater algorithm aversion: they discounted
advice based on a sense that they better understood the
nuances of the IT systems and had greater accountabili-
ty for unintended consequences of accepting inaccurate
algorithmic advice.

Next, we pursue the theoretical implications of our
theory and findings, highlighting contributions to re-
search on human capital and technological change,
research on algorithm aversion, and managerial prac-
tice. We also outline limitations and scope conditions
of our study.

Implications for Human Capital and
Technological Change
Prior literature on human capital and technological
change emphasizes the benefits of human domain ex-
perience for algorithm-augmented work (Autor 2015,
Brynjolfsson and Mitchell 2017, Shrestha et al. 2019,
Choudhury et al. 2020b, Raisch and Krakowski 2020).
We question this literature’s view that more domain
experience is always better for algorithm-augmented
work. We highlight that although domain experience
may always lead to increases in ability, domain expe-
rience may also trigger other mechanisms that inhibit
algorithm-augmented performance. In other words,
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theoretically, there could be a limit to the extent expe-
rience positively affects algorithm-augmented work
performance.

As a primary contribution to this literature, we pro-
vide a framework that integrates the countervailing
forces of ability and aversion. This framework gener-
ates a new prediction: that intermediate levels of do-
main experience provide the greatest increases in
algorithm-augmented performance (relative to self-
performance). Our framework and findings suggest a
need for increased sensitivity to the multiplicity of
mechanisms at play when workers augment their
judgment using algorithms. Whether or not human
domain experience complements algorithms depends
heavily on whether the ability effect or the aversion
affect is stronger for a worker with a given level of do-
main experience in a given context (for more on con-
text, see scope conditions and limitations section).

Our contribution to this literature echoes, but is dis-
tinct from, the broad literature on the adoption of new
technologies in general. Prior work highlights that
workers with more domain experience may have de-
creased motivation to adopt new technologies due to a
vested stake in the status quo (Barley 1986, Henderson
1993, Edmondson et al. 2001, Helfat and Peteraf 2003,
Kellogg 2014, Eggers and Kaul 2018, Greenwood et al.
2019). Unlike these prior studies, the new algorithmic
tool in our context did not represent a major threat to
the status quo—that is, the livelihood, status, or eco-
nomically significant human capital investments of
workers. For the participants in our study sample, re-
solving help tickets represents just a small portion of
overall work, and in field interviews they reported
that the ticket resolution task was considered “low sta-
tus and menial.” In short, the algorithmic tool was a
“welcome relief” to make their work “faster and eas-
ier.” Yet there was still aversion from more experi-
enced workers, for reasons we discuss next.

Implications for Algorithm Aversion
Whereas prior literature on algorithm aversion implies
that expertise is a liability for algorithm-augmented
judgments (Arkes et al. 1986, Logg et al. 2019), we coun-
ter that domain experience is, in fact, the primary means
by which humans have any potential to complement
algorithmic judgment. Our theory and results highlight
that, because domain experience increases comple-
mentarity via increased ability, increasing domain
experience actually increases algorithm-augmented
performance for low experience workers (or others
who do not exhibit high levels of algorithm aversion).
Thus, the primary question in whether an expert will
do better or worse with an algorithm is not merely
how much domain experience they have, but rather
whether the aversion effect overpowers the ability

effect in a given context (for more on context, see scope
conditions and limitations section).

Our study also highlights that algorithm aversion is
present despite the technological shift to algorithms
built using machine learning. Experts have long been
averse to algorithms of past technology vintages, such
as expert rule-based systems (Dreyfus and Dreyfus
1984) or decision rules (Arkes et al. 1986). But it is not
obvious that experts would have the same aversion to
algorithms built using machine learning, which rely
on an inductive learning approach rather than hard-
wired codifiable knowledge (Choudhury et al. 2020a).
When AI meant rule-based logic, observers of expert
systems observed that experts do not think by rules, so
AI would have limited usefulness to them in most con-
texts (Dreyfus and Dreyfus 1984). Yet, we observe that
even when AI more closely resembles the case-based
inductive learning processes of human experts, aver-
sion persists for other reasons—such as egocentric ad-
vice discounting and accountability. In other words,
experts may not be averse to expert-codified decision
rules, but have a more general aversion toward algo-
rithms, broadly conceived.

Our theoretical contributions were driven by two
key empirical contributions to this literature. First,
we explored the forces at play across a gradient of
experience—which allowed us to uncover the in-
verted U-shaped relationship perhaps hidden by the
binary classifications (e.g., expert vs. layperson)
used in previous laboratory studies (Logg et al.
2019). Our supplementary between-subjects analysis
is partially consistent with previous laboratory ex-
periments that indicate that experts may reject ad-
vice more often than nonexperts (Arkes et al. 1986,
Logg et al. 2019). Comparing moderately experi-
enced to highly experienced participants in our
study, there was evidence that the highly experi-
enced rejected good algorithmic advice more fre-
quently. However, comparing the least experienced
to the most experienced participants, there was not
much of a difference. We reconcile differences be-
tween studies in the scope conditions and limitations
section.

Second, because we empirically observed aversion
outside the laboratory, we were able to notice a rela-
tively novel mechanism for explaining why higher ex-
perience workers have greater algorithm aversion:
greater accountability for possible unintended conse-
quences of accepting inaccurate algorithmic advice. In
addition to the usual explanations for aversion, our in-
terviews revealed that high experience workers were
more aware of the potential consequences of their ac-
tions than their lower experience counterparts. These
high experience workers expressed greater account-
ability for the smooth operation of the firm’s IT sys-
tems. If the system crashed, it would be their fault and
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they would have to explain what went wrong. This
greater accountability, along with the belief that they
had a deeper understanding of the systems than the al-
gorithm, prompted the high experience workers to re-
lease tickets to resolve manually—at a far greater rate
than necessary based on the underlying accuracy of
the algorithm. This observation echoes recent observa-
tions that experienced radiologists who bear financial
and legal accountability for diagnoses ignore algorith-
mic advice when they are unable to interrogate the
reasoning behind the algorithmic recommendation
(Lebovitz et al. 2020). We suggest that accountability
as an explanation of aversion is not easily observable
in a laboratory, but will be readily observed in real-
world organizational settings.

Scope Conditions, Other Limitations, and Future
Research Directions
We expect that the forces of ability and aversion will
be present in a wide variety of contexts, but contextual
factors will influence the relative intensity of the
forces, and thus sharpen or flatten the inverted
U-shape of overall performance. Here we highlight a
few contextual factors that we expect to be particularly
salient. First, in some contexts, experts may feel more
threatened by algorithms if the algorithms have a
significant impact on their professional identity or live-
lihood (Kellogg et al. 2020). We expect this would in-
crease the relative intensity of the aversion effect for
higher experience workers, causing a more precipitous
decline in the inverted U shape. Second, based on our
own observations and prior literature (Dietvorst et al.
2018), we expect that greater control over the algo-
rithm in both designing the algorithm and while over-
riding algorithmic advice in production settings, and/
or greater algorithmic transparency, would decrease
aversion and thus flatten the U-shape. Third, we ex-
pect that the accuracy of the algorithm (overall and rel-
ative to the human), should have significant impact on
algorithm-augmented performance relative to self-
performance. Though we are not aware of work on
this topic, we expect that—assuming humans have an
accurate perception of the algorithm’s accuracy—more
accurate algorithms will flatten the U-shape.

Another contextual factor may help reconcile our
findings with laboratory studies conducted in other
contexts. Domain experience gleaned from learning by
doing may have a limited impact on ability in contexts
with high causal ambiguity (Kahneman and Klein
2009)—such as geopolitical forecasting (Tetlock 2009).
In these cases, we expect the influence of aversion to
more quickly outweigh ability over the range of do-
main experience. Accordingly, algorithm-augmented
performance could actually become worse than self-
performance (which may help explain the worse

performance of geopolitical forecasting experts in
Logg et al. 2019).

Due to such contextual dependencies, our study takes
no general stance on whether algorithm-augmented
performance will be worse than (or significantly better
than) self-performance. It merely predicts that the best
algorithm-augmented performance (relative to self-
performance) will be achieved by those with moderate
levels of domain experience—a result we expect to hold
to varying degrees in a variety of contexts. Future stud-
ies can test these expectations by varying some of the
contextual factors listed earlier.

Our study has other limitations, suggesting a rich
agenda for future research. First, our study was
bounded in time—a four-hour experimental session.
Future work should explore whether the observed ef-
fects persist after several days, weeks, or months, and
how quickly workers with varying levels of experi-
ence learn to trust (or mistrust) an algorithm. Second,
although a strength of this study is that it employs
an objective measure of accuracy in judgment (i.e.,
whether the ticket was resolved or not), we acknowl-
edge that other organizational decisions may not lend
themselves to an objective measure of accuracy—
especially for relatively uncertain tasks. Third, it is
possible that our measure of domain experience is
correlated with the age of the worker, though we are
less concerned with this given that all workers were
in the age group of 23 to 35 years (the company did
not give us exact worker ages). Finally, in our context,
we do not observe whether high experience workers’
algorithm aversion is because they do not trust the
algorithm’s advice or because they do not trust the
black-box algorithm to execute it correctly. This is a
potentially important distinction that can be left to fu-
ture research.

Implications for Practice
Our research guides managers seeking to design effec-
tive hybrid human/algorithm decision processes. A
key insight is that effective interventions may look
quite different for employees with different levels of
experience.

High experience workers, who tend to have high
ability but also high aversion, will benefit most from
efforts to decrease aversion. One intervention could be
to design algorithmic tools and processes with greater
transparency and with greater human control over the
algorithmic actions. Greater transparency and control
would allow high experience workers to interrogate
the algorithm’s reasoning and feel more at ease with a
sense of control over the end result (Dietvorst et al.
2018). This would also give high experience workers,
who feel a greater sense of accountability for the final
result, a way to responsibly make use of an algorithm
without having to trust their responsibility to a black
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box.17 For this reason, we predict the emerging stream
of research related to algorithmic accountability (e.g.,
the fairness, accountability, and transparency or FAT
stream of the literature, see Shin and Park 2019) will
be increasingly relevant as it is applied to policy dis-
cussions on algorithmic accountability outside the
laboratory (e.g., discussions hosted by the ACM U.S.
Public Policy Council and ACM Europe Council Policy
Committee).

Low experience workers, who tend to have low aver-
sion but low ability, will likely benefit more from a dif-
ferent set of interventions. Although it is not possible to
instantly grant a worker additional domain experience
(which takes years of learning by doing), it is possible
to design training, processes, and incentives so that
workers are more inclined to accept an accurate algo-
rithm’s advice. Based on our analyses, we suggest two
ways to reduce algorithmic noncompliance among low
experience workers. First, we suggest lowering the cost
of accepting inaccurate algorithmic advice. In our study,
participants who could not assess the algorithm’s accu-
racy felt it would be too costly to get it wrong, and in-
stead preferred releasing the ticket for someone to get it
right the first time. Second, we suggest training workers
to understand the baseline quality of algorithmic rec-
ommendations. In our context, if low experience work-
ers had understood that the algorithm was accurate
90% of the time, and their own baseline performance
was lower, they might have been more inclined to defer
to the algorithm’s advice. These interventions will be
applicable in settings where greater algorithmic compli-
ance is actually desirable—that is, the algorithm tends
to outperform workers with low experience.

Conclusion
If current trends are any guide, work at the intersec-
tion of humans and algorithms will grow as an impor-
tant topic for organizational scholars. Existing work
has focused on the role of domain experience in
achieving human-algorithm complementarities, with
mixed perspectives on whether domain experience in-
creases or inhibits algorithm-augmented performance.
By proposing a unifying framework of how domain
experience affects performance via countervailing
mechanisms—ability and aversion—we help reconcile
these perspectives. We hope to inspire future work on
the multiplicity of competing mechanisms at play
when workers use algorithms in their work.

Endnotes
1 When we use the word “algorithm” in this paper, we are specifi-
cally referring to a tool that takes information as input, then system-
atically parses that information to make an assessment or decision
recommendation as output. We are not referring to the algorithms
that build the algorithmic tools. For example, ML algorithms can
build classification models from large sets of training data, and

those classification models can be used as algorithmic tools. We are
referring to the latter, which is why we refer to ML-built or
ML-developed algorithmic tools.
2 A help ticket is a document that is generated when someone sub-
mits an issue to an IT support team. Each ticket documents a work
order and is resolved when the underlying IT problem (e.g., a serv-
er is not working, an employee cannot log in remotely) is fixed.
3 Expertise was measured by a questionnaire about baseball (the rel-
evant topic in the experiment).
4 Experts in this experiment were defined as “professionals whose
work in the field of national security for the U.S. government made
them experts in geopolitical forecasting.”
5 Expertise in laypeople was measured by multiple-choice question-
naires about domain-specific topics.
6 Expertise of evaluators was measured by the proximity of their
previous academic papers to the papers being evaluated.
7 Expertise is measured using scientists’ citations.
8 Though not a salient feature in the context of our study (which we
explain later in the discussion of the setting), it is worth noting that
in other contexts, there may be additional reasons for resistance
against algorithms, such as professional identity threats (e.g., Kel-
logg et al. 2020).
9 TECHCO uses systems based on both Windows/Intel and Linux.
10 AutomateIT is a pseudonym.
11 Several employees mistakenly received tickets that were not re-
peated in both manual and AutomateIT resolution modes (overall
126 tickets were not repeated). For example, they were given three
tickets to solve in both manual and AutomateIT resolution systems
(six tickets), and the remaining two tickets were unique. We also ran
a subsample analysis excluding these cases, which did not meaning-
fully affect the results (see online appendix Table A1, column 1).
12 The construction of this measure is similar to how Greenwood
et al. (2019) measure expertise. The authors measured the number
of quarters the physician practiced medicine since graduation from
medical school.
13 As we did not have the exact time stamps for tickets that were
manually released, we had to impute the order for some tickets. For
these tickets, we randomized their order within the range of tickets
with the same resolution mode. For example, if a participant had
three AutomateIT tickets assigned at the beginning of the session
and one ticket that was released and, therefore, had no time stamp,
we would randomly assign that ticket order to be 1, 2, 3, or 4. This
procedure eliminates systematic biases for ordering of released tick-
ets and ensures that the Recurring Ticket variable is accurate.
14 Logistic regression models yield nearly identical results.
15 This is because, in addition to the balance test for AutomateIT
versus manual tickets in the summary statistics in Table 1, we
also checked for balance across levels of IT experience in online
appendix Table A2. Although this is not a traditional balance test
(because we do not randomly assign IT experience, but instead
employ a within-subjects experimental design), Table A2 reveals
a potential issue with the experiment: the ticket order of Automa-
teIT tickets are not evenly distributed across participants with
varying levels of domain experience. To address this, we control
for Ticket Orderik and Recurring Ticketik in our models, as well as
interact them with Is AutomateIT Ticketk. We also interact both
Recurring Ticketik and Ticket Orderik with Years of IT Experiencei +
Years of IT Experience2i to ensure that the ordering of tickets un-
evenly distributed across the range of participant domain experi-
ence did not explain our results. Additionally, in a robustness
check, we ensure that the same patterns hold, even if just using
tickets’ first appearance with no recurring tickets (discussed in
Table 3 and online appendix Table A3).
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16 The linear coefficient for the interaction Is AutomateIT Ticket * Years of
IT Experience is just below the threshold of significance (α � 0.05) when
participant-level fixed effects are included (t-stat � 1.82). This is partly
due to the decreased sample size of the subset of attempted tickets.
17 To quote Garfinkel et al. (2017, p. 5), “Accountability rejects the com-
mon deflection of blame to an automated system by ensuring those
who deploy an algorithm cannot eschew responsibility for its actions.”
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